deepbooru_model.py 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678
  1. import torch
  2. import torch.nn as nn
  3. import torch.nn.functional as F
  4. from modules import devices
  5. # see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more
  6. class DeepDanbooruModel(nn.Module):
  7. def __init__(self):
  8. super(DeepDanbooruModel, self).__init__()
  9. self.tags = []
  10. self.n_Conv_0 = nn.Conv2d(kernel_size=(7, 7), in_channels=3, out_channels=64, stride=(2, 2))
  11. self.n_MaxPool_0 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))
  12. self.n_Conv_1 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
  13. self.n_Conv_2 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=64)
  14. self.n_Conv_3 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
  15. self.n_Conv_4 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
  16. self.n_Conv_5 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
  17. self.n_Conv_6 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
  18. self.n_Conv_7 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
  19. self.n_Conv_8 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
  20. self.n_Conv_9 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
  21. self.n_Conv_10 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
  22. self.n_Conv_11 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=512, stride=(2, 2))
  23. self.n_Conv_12 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=128)
  24. self.n_Conv_13 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128, stride=(2, 2))
  25. self.n_Conv_14 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
  26. self.n_Conv_15 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
  27. self.n_Conv_16 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
  28. self.n_Conv_17 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
  29. self.n_Conv_18 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
  30. self.n_Conv_19 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
  31. self.n_Conv_20 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
  32. self.n_Conv_21 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
  33. self.n_Conv_22 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
  34. self.n_Conv_23 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
  35. self.n_Conv_24 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
  36. self.n_Conv_25 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
  37. self.n_Conv_26 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
  38. self.n_Conv_27 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
  39. self.n_Conv_28 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
  40. self.n_Conv_29 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
  41. self.n_Conv_30 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
  42. self.n_Conv_31 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
  43. self.n_Conv_32 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
  44. self.n_Conv_33 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
  45. self.n_Conv_34 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
  46. self.n_Conv_35 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
  47. self.n_Conv_36 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=1024, stride=(2, 2))
  48. self.n_Conv_37 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=256)
  49. self.n_Conv_38 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
  50. self.n_Conv_39 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  51. self.n_Conv_40 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  52. self.n_Conv_41 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  53. self.n_Conv_42 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  54. self.n_Conv_43 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  55. self.n_Conv_44 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  56. self.n_Conv_45 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  57. self.n_Conv_46 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  58. self.n_Conv_47 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  59. self.n_Conv_48 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  60. self.n_Conv_49 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  61. self.n_Conv_50 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  62. self.n_Conv_51 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  63. self.n_Conv_52 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  64. self.n_Conv_53 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  65. self.n_Conv_54 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  66. self.n_Conv_55 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  67. self.n_Conv_56 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  68. self.n_Conv_57 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  69. self.n_Conv_58 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  70. self.n_Conv_59 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  71. self.n_Conv_60 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  72. self.n_Conv_61 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  73. self.n_Conv_62 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  74. self.n_Conv_63 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  75. self.n_Conv_64 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  76. self.n_Conv_65 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  77. self.n_Conv_66 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  78. self.n_Conv_67 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  79. self.n_Conv_68 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  80. self.n_Conv_69 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  81. self.n_Conv_70 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  82. self.n_Conv_71 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  83. self.n_Conv_72 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  84. self.n_Conv_73 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  85. self.n_Conv_74 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  86. self.n_Conv_75 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  87. self.n_Conv_76 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  88. self.n_Conv_77 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  89. self.n_Conv_78 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  90. self.n_Conv_79 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  91. self.n_Conv_80 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  92. self.n_Conv_81 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  93. self.n_Conv_82 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  94. self.n_Conv_83 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  95. self.n_Conv_84 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  96. self.n_Conv_85 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  97. self.n_Conv_86 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  98. self.n_Conv_87 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  99. self.n_Conv_88 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  100. self.n_Conv_89 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  101. self.n_Conv_90 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  102. self.n_Conv_91 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  103. self.n_Conv_92 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  104. self.n_Conv_93 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  105. self.n_Conv_94 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  106. self.n_Conv_95 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  107. self.n_Conv_96 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  108. self.n_Conv_97 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  109. self.n_Conv_98 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
  110. self.n_Conv_99 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  111. self.n_Conv_100 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=1024, stride=(2, 2))
  112. self.n_Conv_101 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  113. self.n_Conv_102 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  114. self.n_Conv_103 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  115. self.n_Conv_104 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  116. self.n_Conv_105 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  117. self.n_Conv_106 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  118. self.n_Conv_107 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  119. self.n_Conv_108 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  120. self.n_Conv_109 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  121. self.n_Conv_110 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  122. self.n_Conv_111 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  123. self.n_Conv_112 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  124. self.n_Conv_113 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  125. self.n_Conv_114 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  126. self.n_Conv_115 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  127. self.n_Conv_116 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  128. self.n_Conv_117 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  129. self.n_Conv_118 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  130. self.n_Conv_119 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  131. self.n_Conv_120 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  132. self.n_Conv_121 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  133. self.n_Conv_122 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  134. self.n_Conv_123 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  135. self.n_Conv_124 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  136. self.n_Conv_125 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  137. self.n_Conv_126 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  138. self.n_Conv_127 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  139. self.n_Conv_128 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  140. self.n_Conv_129 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  141. self.n_Conv_130 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  142. self.n_Conv_131 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  143. self.n_Conv_132 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  144. self.n_Conv_133 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  145. self.n_Conv_134 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  146. self.n_Conv_135 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  147. self.n_Conv_136 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  148. self.n_Conv_137 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  149. self.n_Conv_138 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  150. self.n_Conv_139 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  151. self.n_Conv_140 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  152. self.n_Conv_141 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  153. self.n_Conv_142 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  154. self.n_Conv_143 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  155. self.n_Conv_144 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  156. self.n_Conv_145 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  157. self.n_Conv_146 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  158. self.n_Conv_147 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  159. self.n_Conv_148 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  160. self.n_Conv_149 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  161. self.n_Conv_150 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  162. self.n_Conv_151 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  163. self.n_Conv_152 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  164. self.n_Conv_153 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  165. self.n_Conv_154 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  166. self.n_Conv_155 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
  167. self.n_Conv_156 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
  168. self.n_Conv_157 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
  169. self.n_Conv_158 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=2048, stride=(2, 2))
  170. self.n_Conv_159 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=512)
  171. self.n_Conv_160 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512, stride=(2, 2))
  172. self.n_Conv_161 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
  173. self.n_Conv_162 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
  174. self.n_Conv_163 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
  175. self.n_Conv_164 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
  176. self.n_Conv_165 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
  177. self.n_Conv_166 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
  178. self.n_Conv_167 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
  179. self.n_Conv_168 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=4096, stride=(2, 2))
  180. self.n_Conv_169 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=1024)
  181. self.n_Conv_170 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024, stride=(2, 2))
  182. self.n_Conv_171 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
  183. self.n_Conv_172 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
  184. self.n_Conv_173 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
  185. self.n_Conv_174 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
  186. self.n_Conv_175 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
  187. self.n_Conv_176 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
  188. self.n_Conv_177 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
  189. self.n_Conv_178 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=9176, bias=False)
  190. def forward(self, *inputs):
  191. t_358, = inputs
  192. t_359 = t_358.permute(*[0, 3, 1, 2])
  193. t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
  194. t_360 = self.n_Conv_0(t_359_padded.to(self.n_Conv_0.bias.dtype) if devices.unet_needs_upcast else t_359_padded)
  195. t_361 = F.relu(t_360)
  196. t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
  197. t_362 = self.n_MaxPool_0(t_361)
  198. t_363 = self.n_Conv_1(t_362)
  199. t_364 = self.n_Conv_2(t_362)
  200. t_365 = F.relu(t_364)
  201. t_365_padded = F.pad(t_365, [1, 1, 1, 1], value=0)
  202. t_366 = self.n_Conv_3(t_365_padded)
  203. t_367 = F.relu(t_366)
  204. t_368 = self.n_Conv_4(t_367)
  205. t_369 = torch.add(t_368, t_363)
  206. t_370 = F.relu(t_369)
  207. t_371 = self.n_Conv_5(t_370)
  208. t_372 = F.relu(t_371)
  209. t_372_padded = F.pad(t_372, [1, 1, 1, 1], value=0)
  210. t_373 = self.n_Conv_6(t_372_padded)
  211. t_374 = F.relu(t_373)
  212. t_375 = self.n_Conv_7(t_374)
  213. t_376 = torch.add(t_375, t_370)
  214. t_377 = F.relu(t_376)
  215. t_378 = self.n_Conv_8(t_377)
  216. t_379 = F.relu(t_378)
  217. t_379_padded = F.pad(t_379, [1, 1, 1, 1], value=0)
  218. t_380 = self.n_Conv_9(t_379_padded)
  219. t_381 = F.relu(t_380)
  220. t_382 = self.n_Conv_10(t_381)
  221. t_383 = torch.add(t_382, t_377)
  222. t_384 = F.relu(t_383)
  223. t_385 = self.n_Conv_11(t_384)
  224. t_386 = self.n_Conv_12(t_384)
  225. t_387 = F.relu(t_386)
  226. t_387_padded = F.pad(t_387, [0, 1, 0, 1], value=0)
  227. t_388 = self.n_Conv_13(t_387_padded)
  228. t_389 = F.relu(t_388)
  229. t_390 = self.n_Conv_14(t_389)
  230. t_391 = torch.add(t_390, t_385)
  231. t_392 = F.relu(t_391)
  232. t_393 = self.n_Conv_15(t_392)
  233. t_394 = F.relu(t_393)
  234. t_394_padded = F.pad(t_394, [1, 1, 1, 1], value=0)
  235. t_395 = self.n_Conv_16(t_394_padded)
  236. t_396 = F.relu(t_395)
  237. t_397 = self.n_Conv_17(t_396)
  238. t_398 = torch.add(t_397, t_392)
  239. t_399 = F.relu(t_398)
  240. t_400 = self.n_Conv_18(t_399)
  241. t_401 = F.relu(t_400)
  242. t_401_padded = F.pad(t_401, [1, 1, 1, 1], value=0)
  243. t_402 = self.n_Conv_19(t_401_padded)
  244. t_403 = F.relu(t_402)
  245. t_404 = self.n_Conv_20(t_403)
  246. t_405 = torch.add(t_404, t_399)
  247. t_406 = F.relu(t_405)
  248. t_407 = self.n_Conv_21(t_406)
  249. t_408 = F.relu(t_407)
  250. t_408_padded = F.pad(t_408, [1, 1, 1, 1], value=0)
  251. t_409 = self.n_Conv_22(t_408_padded)
  252. t_410 = F.relu(t_409)
  253. t_411 = self.n_Conv_23(t_410)
  254. t_412 = torch.add(t_411, t_406)
  255. t_413 = F.relu(t_412)
  256. t_414 = self.n_Conv_24(t_413)
  257. t_415 = F.relu(t_414)
  258. t_415_padded = F.pad(t_415, [1, 1, 1, 1], value=0)
  259. t_416 = self.n_Conv_25(t_415_padded)
  260. t_417 = F.relu(t_416)
  261. t_418 = self.n_Conv_26(t_417)
  262. t_419 = torch.add(t_418, t_413)
  263. t_420 = F.relu(t_419)
  264. t_421 = self.n_Conv_27(t_420)
  265. t_422 = F.relu(t_421)
  266. t_422_padded = F.pad(t_422, [1, 1, 1, 1], value=0)
  267. t_423 = self.n_Conv_28(t_422_padded)
  268. t_424 = F.relu(t_423)
  269. t_425 = self.n_Conv_29(t_424)
  270. t_426 = torch.add(t_425, t_420)
  271. t_427 = F.relu(t_426)
  272. t_428 = self.n_Conv_30(t_427)
  273. t_429 = F.relu(t_428)
  274. t_429_padded = F.pad(t_429, [1, 1, 1, 1], value=0)
  275. t_430 = self.n_Conv_31(t_429_padded)
  276. t_431 = F.relu(t_430)
  277. t_432 = self.n_Conv_32(t_431)
  278. t_433 = torch.add(t_432, t_427)
  279. t_434 = F.relu(t_433)
  280. t_435 = self.n_Conv_33(t_434)
  281. t_436 = F.relu(t_435)
  282. t_436_padded = F.pad(t_436, [1, 1, 1, 1], value=0)
  283. t_437 = self.n_Conv_34(t_436_padded)
  284. t_438 = F.relu(t_437)
  285. t_439 = self.n_Conv_35(t_438)
  286. t_440 = torch.add(t_439, t_434)
  287. t_441 = F.relu(t_440)
  288. t_442 = self.n_Conv_36(t_441)
  289. t_443 = self.n_Conv_37(t_441)
  290. t_444 = F.relu(t_443)
  291. t_444_padded = F.pad(t_444, [0, 1, 0, 1], value=0)
  292. t_445 = self.n_Conv_38(t_444_padded)
  293. t_446 = F.relu(t_445)
  294. t_447 = self.n_Conv_39(t_446)
  295. t_448 = torch.add(t_447, t_442)
  296. t_449 = F.relu(t_448)
  297. t_450 = self.n_Conv_40(t_449)
  298. t_451 = F.relu(t_450)
  299. t_451_padded = F.pad(t_451, [1, 1, 1, 1], value=0)
  300. t_452 = self.n_Conv_41(t_451_padded)
  301. t_453 = F.relu(t_452)
  302. t_454 = self.n_Conv_42(t_453)
  303. t_455 = torch.add(t_454, t_449)
  304. t_456 = F.relu(t_455)
  305. t_457 = self.n_Conv_43(t_456)
  306. t_458 = F.relu(t_457)
  307. t_458_padded = F.pad(t_458, [1, 1, 1, 1], value=0)
  308. t_459 = self.n_Conv_44(t_458_padded)
  309. t_460 = F.relu(t_459)
  310. t_461 = self.n_Conv_45(t_460)
  311. t_462 = torch.add(t_461, t_456)
  312. t_463 = F.relu(t_462)
  313. t_464 = self.n_Conv_46(t_463)
  314. t_465 = F.relu(t_464)
  315. t_465_padded = F.pad(t_465, [1, 1, 1, 1], value=0)
  316. t_466 = self.n_Conv_47(t_465_padded)
  317. t_467 = F.relu(t_466)
  318. t_468 = self.n_Conv_48(t_467)
  319. t_469 = torch.add(t_468, t_463)
  320. t_470 = F.relu(t_469)
  321. t_471 = self.n_Conv_49(t_470)
  322. t_472 = F.relu(t_471)
  323. t_472_padded = F.pad(t_472, [1, 1, 1, 1], value=0)
  324. t_473 = self.n_Conv_50(t_472_padded)
  325. t_474 = F.relu(t_473)
  326. t_475 = self.n_Conv_51(t_474)
  327. t_476 = torch.add(t_475, t_470)
  328. t_477 = F.relu(t_476)
  329. t_478 = self.n_Conv_52(t_477)
  330. t_479 = F.relu(t_478)
  331. t_479_padded = F.pad(t_479, [1, 1, 1, 1], value=0)
  332. t_480 = self.n_Conv_53(t_479_padded)
  333. t_481 = F.relu(t_480)
  334. t_482 = self.n_Conv_54(t_481)
  335. t_483 = torch.add(t_482, t_477)
  336. t_484 = F.relu(t_483)
  337. t_485 = self.n_Conv_55(t_484)
  338. t_486 = F.relu(t_485)
  339. t_486_padded = F.pad(t_486, [1, 1, 1, 1], value=0)
  340. t_487 = self.n_Conv_56(t_486_padded)
  341. t_488 = F.relu(t_487)
  342. t_489 = self.n_Conv_57(t_488)
  343. t_490 = torch.add(t_489, t_484)
  344. t_491 = F.relu(t_490)
  345. t_492 = self.n_Conv_58(t_491)
  346. t_493 = F.relu(t_492)
  347. t_493_padded = F.pad(t_493, [1, 1, 1, 1], value=0)
  348. t_494 = self.n_Conv_59(t_493_padded)
  349. t_495 = F.relu(t_494)
  350. t_496 = self.n_Conv_60(t_495)
  351. t_497 = torch.add(t_496, t_491)
  352. t_498 = F.relu(t_497)
  353. t_499 = self.n_Conv_61(t_498)
  354. t_500 = F.relu(t_499)
  355. t_500_padded = F.pad(t_500, [1, 1, 1, 1], value=0)
  356. t_501 = self.n_Conv_62(t_500_padded)
  357. t_502 = F.relu(t_501)
  358. t_503 = self.n_Conv_63(t_502)
  359. t_504 = torch.add(t_503, t_498)
  360. t_505 = F.relu(t_504)
  361. t_506 = self.n_Conv_64(t_505)
  362. t_507 = F.relu(t_506)
  363. t_507_padded = F.pad(t_507, [1, 1, 1, 1], value=0)
  364. t_508 = self.n_Conv_65(t_507_padded)
  365. t_509 = F.relu(t_508)
  366. t_510 = self.n_Conv_66(t_509)
  367. t_511 = torch.add(t_510, t_505)
  368. t_512 = F.relu(t_511)
  369. t_513 = self.n_Conv_67(t_512)
  370. t_514 = F.relu(t_513)
  371. t_514_padded = F.pad(t_514, [1, 1, 1, 1], value=0)
  372. t_515 = self.n_Conv_68(t_514_padded)
  373. t_516 = F.relu(t_515)
  374. t_517 = self.n_Conv_69(t_516)
  375. t_518 = torch.add(t_517, t_512)
  376. t_519 = F.relu(t_518)
  377. t_520 = self.n_Conv_70(t_519)
  378. t_521 = F.relu(t_520)
  379. t_521_padded = F.pad(t_521, [1, 1, 1, 1], value=0)
  380. t_522 = self.n_Conv_71(t_521_padded)
  381. t_523 = F.relu(t_522)
  382. t_524 = self.n_Conv_72(t_523)
  383. t_525 = torch.add(t_524, t_519)
  384. t_526 = F.relu(t_525)
  385. t_527 = self.n_Conv_73(t_526)
  386. t_528 = F.relu(t_527)
  387. t_528_padded = F.pad(t_528, [1, 1, 1, 1], value=0)
  388. t_529 = self.n_Conv_74(t_528_padded)
  389. t_530 = F.relu(t_529)
  390. t_531 = self.n_Conv_75(t_530)
  391. t_532 = torch.add(t_531, t_526)
  392. t_533 = F.relu(t_532)
  393. t_534 = self.n_Conv_76(t_533)
  394. t_535 = F.relu(t_534)
  395. t_535_padded = F.pad(t_535, [1, 1, 1, 1], value=0)
  396. t_536 = self.n_Conv_77(t_535_padded)
  397. t_537 = F.relu(t_536)
  398. t_538 = self.n_Conv_78(t_537)
  399. t_539 = torch.add(t_538, t_533)
  400. t_540 = F.relu(t_539)
  401. t_541 = self.n_Conv_79(t_540)
  402. t_542 = F.relu(t_541)
  403. t_542_padded = F.pad(t_542, [1, 1, 1, 1], value=0)
  404. t_543 = self.n_Conv_80(t_542_padded)
  405. t_544 = F.relu(t_543)
  406. t_545 = self.n_Conv_81(t_544)
  407. t_546 = torch.add(t_545, t_540)
  408. t_547 = F.relu(t_546)
  409. t_548 = self.n_Conv_82(t_547)
  410. t_549 = F.relu(t_548)
  411. t_549_padded = F.pad(t_549, [1, 1, 1, 1], value=0)
  412. t_550 = self.n_Conv_83(t_549_padded)
  413. t_551 = F.relu(t_550)
  414. t_552 = self.n_Conv_84(t_551)
  415. t_553 = torch.add(t_552, t_547)
  416. t_554 = F.relu(t_553)
  417. t_555 = self.n_Conv_85(t_554)
  418. t_556 = F.relu(t_555)
  419. t_556_padded = F.pad(t_556, [1, 1, 1, 1], value=0)
  420. t_557 = self.n_Conv_86(t_556_padded)
  421. t_558 = F.relu(t_557)
  422. t_559 = self.n_Conv_87(t_558)
  423. t_560 = torch.add(t_559, t_554)
  424. t_561 = F.relu(t_560)
  425. t_562 = self.n_Conv_88(t_561)
  426. t_563 = F.relu(t_562)
  427. t_563_padded = F.pad(t_563, [1, 1, 1, 1], value=0)
  428. t_564 = self.n_Conv_89(t_563_padded)
  429. t_565 = F.relu(t_564)
  430. t_566 = self.n_Conv_90(t_565)
  431. t_567 = torch.add(t_566, t_561)
  432. t_568 = F.relu(t_567)
  433. t_569 = self.n_Conv_91(t_568)
  434. t_570 = F.relu(t_569)
  435. t_570_padded = F.pad(t_570, [1, 1, 1, 1], value=0)
  436. t_571 = self.n_Conv_92(t_570_padded)
  437. t_572 = F.relu(t_571)
  438. t_573 = self.n_Conv_93(t_572)
  439. t_574 = torch.add(t_573, t_568)
  440. t_575 = F.relu(t_574)
  441. t_576 = self.n_Conv_94(t_575)
  442. t_577 = F.relu(t_576)
  443. t_577_padded = F.pad(t_577, [1, 1, 1, 1], value=0)
  444. t_578 = self.n_Conv_95(t_577_padded)
  445. t_579 = F.relu(t_578)
  446. t_580 = self.n_Conv_96(t_579)
  447. t_581 = torch.add(t_580, t_575)
  448. t_582 = F.relu(t_581)
  449. t_583 = self.n_Conv_97(t_582)
  450. t_584 = F.relu(t_583)
  451. t_584_padded = F.pad(t_584, [0, 1, 0, 1], value=0)
  452. t_585 = self.n_Conv_98(t_584_padded)
  453. t_586 = F.relu(t_585)
  454. t_587 = self.n_Conv_99(t_586)
  455. t_588 = self.n_Conv_100(t_582)
  456. t_589 = torch.add(t_587, t_588)
  457. t_590 = F.relu(t_589)
  458. t_591 = self.n_Conv_101(t_590)
  459. t_592 = F.relu(t_591)
  460. t_592_padded = F.pad(t_592, [1, 1, 1, 1], value=0)
  461. t_593 = self.n_Conv_102(t_592_padded)
  462. t_594 = F.relu(t_593)
  463. t_595 = self.n_Conv_103(t_594)
  464. t_596 = torch.add(t_595, t_590)
  465. t_597 = F.relu(t_596)
  466. t_598 = self.n_Conv_104(t_597)
  467. t_599 = F.relu(t_598)
  468. t_599_padded = F.pad(t_599, [1, 1, 1, 1], value=0)
  469. t_600 = self.n_Conv_105(t_599_padded)
  470. t_601 = F.relu(t_600)
  471. t_602 = self.n_Conv_106(t_601)
  472. t_603 = torch.add(t_602, t_597)
  473. t_604 = F.relu(t_603)
  474. t_605 = self.n_Conv_107(t_604)
  475. t_606 = F.relu(t_605)
  476. t_606_padded = F.pad(t_606, [1, 1, 1, 1], value=0)
  477. t_607 = self.n_Conv_108(t_606_padded)
  478. t_608 = F.relu(t_607)
  479. t_609 = self.n_Conv_109(t_608)
  480. t_610 = torch.add(t_609, t_604)
  481. t_611 = F.relu(t_610)
  482. t_612 = self.n_Conv_110(t_611)
  483. t_613 = F.relu(t_612)
  484. t_613_padded = F.pad(t_613, [1, 1, 1, 1], value=0)
  485. t_614 = self.n_Conv_111(t_613_padded)
  486. t_615 = F.relu(t_614)
  487. t_616 = self.n_Conv_112(t_615)
  488. t_617 = torch.add(t_616, t_611)
  489. t_618 = F.relu(t_617)
  490. t_619 = self.n_Conv_113(t_618)
  491. t_620 = F.relu(t_619)
  492. t_620_padded = F.pad(t_620, [1, 1, 1, 1], value=0)
  493. t_621 = self.n_Conv_114(t_620_padded)
  494. t_622 = F.relu(t_621)
  495. t_623 = self.n_Conv_115(t_622)
  496. t_624 = torch.add(t_623, t_618)
  497. t_625 = F.relu(t_624)
  498. t_626 = self.n_Conv_116(t_625)
  499. t_627 = F.relu(t_626)
  500. t_627_padded = F.pad(t_627, [1, 1, 1, 1], value=0)
  501. t_628 = self.n_Conv_117(t_627_padded)
  502. t_629 = F.relu(t_628)
  503. t_630 = self.n_Conv_118(t_629)
  504. t_631 = torch.add(t_630, t_625)
  505. t_632 = F.relu(t_631)
  506. t_633 = self.n_Conv_119(t_632)
  507. t_634 = F.relu(t_633)
  508. t_634_padded = F.pad(t_634, [1, 1, 1, 1], value=0)
  509. t_635 = self.n_Conv_120(t_634_padded)
  510. t_636 = F.relu(t_635)
  511. t_637 = self.n_Conv_121(t_636)
  512. t_638 = torch.add(t_637, t_632)
  513. t_639 = F.relu(t_638)
  514. t_640 = self.n_Conv_122(t_639)
  515. t_641 = F.relu(t_640)
  516. t_641_padded = F.pad(t_641, [1, 1, 1, 1], value=0)
  517. t_642 = self.n_Conv_123(t_641_padded)
  518. t_643 = F.relu(t_642)
  519. t_644 = self.n_Conv_124(t_643)
  520. t_645 = torch.add(t_644, t_639)
  521. t_646 = F.relu(t_645)
  522. t_647 = self.n_Conv_125(t_646)
  523. t_648 = F.relu(t_647)
  524. t_648_padded = F.pad(t_648, [1, 1, 1, 1], value=0)
  525. t_649 = self.n_Conv_126(t_648_padded)
  526. t_650 = F.relu(t_649)
  527. t_651 = self.n_Conv_127(t_650)
  528. t_652 = torch.add(t_651, t_646)
  529. t_653 = F.relu(t_652)
  530. t_654 = self.n_Conv_128(t_653)
  531. t_655 = F.relu(t_654)
  532. t_655_padded = F.pad(t_655, [1, 1, 1, 1], value=0)
  533. t_656 = self.n_Conv_129(t_655_padded)
  534. t_657 = F.relu(t_656)
  535. t_658 = self.n_Conv_130(t_657)
  536. t_659 = torch.add(t_658, t_653)
  537. t_660 = F.relu(t_659)
  538. t_661 = self.n_Conv_131(t_660)
  539. t_662 = F.relu(t_661)
  540. t_662_padded = F.pad(t_662, [1, 1, 1, 1], value=0)
  541. t_663 = self.n_Conv_132(t_662_padded)
  542. t_664 = F.relu(t_663)
  543. t_665 = self.n_Conv_133(t_664)
  544. t_666 = torch.add(t_665, t_660)
  545. t_667 = F.relu(t_666)
  546. t_668 = self.n_Conv_134(t_667)
  547. t_669 = F.relu(t_668)
  548. t_669_padded = F.pad(t_669, [1, 1, 1, 1], value=0)
  549. t_670 = self.n_Conv_135(t_669_padded)
  550. t_671 = F.relu(t_670)
  551. t_672 = self.n_Conv_136(t_671)
  552. t_673 = torch.add(t_672, t_667)
  553. t_674 = F.relu(t_673)
  554. t_675 = self.n_Conv_137(t_674)
  555. t_676 = F.relu(t_675)
  556. t_676_padded = F.pad(t_676, [1, 1, 1, 1], value=0)
  557. t_677 = self.n_Conv_138(t_676_padded)
  558. t_678 = F.relu(t_677)
  559. t_679 = self.n_Conv_139(t_678)
  560. t_680 = torch.add(t_679, t_674)
  561. t_681 = F.relu(t_680)
  562. t_682 = self.n_Conv_140(t_681)
  563. t_683 = F.relu(t_682)
  564. t_683_padded = F.pad(t_683, [1, 1, 1, 1], value=0)
  565. t_684 = self.n_Conv_141(t_683_padded)
  566. t_685 = F.relu(t_684)
  567. t_686 = self.n_Conv_142(t_685)
  568. t_687 = torch.add(t_686, t_681)
  569. t_688 = F.relu(t_687)
  570. t_689 = self.n_Conv_143(t_688)
  571. t_690 = F.relu(t_689)
  572. t_690_padded = F.pad(t_690, [1, 1, 1, 1], value=0)
  573. t_691 = self.n_Conv_144(t_690_padded)
  574. t_692 = F.relu(t_691)
  575. t_693 = self.n_Conv_145(t_692)
  576. t_694 = torch.add(t_693, t_688)
  577. t_695 = F.relu(t_694)
  578. t_696 = self.n_Conv_146(t_695)
  579. t_697 = F.relu(t_696)
  580. t_697_padded = F.pad(t_697, [1, 1, 1, 1], value=0)
  581. t_698 = self.n_Conv_147(t_697_padded)
  582. t_699 = F.relu(t_698)
  583. t_700 = self.n_Conv_148(t_699)
  584. t_701 = torch.add(t_700, t_695)
  585. t_702 = F.relu(t_701)
  586. t_703 = self.n_Conv_149(t_702)
  587. t_704 = F.relu(t_703)
  588. t_704_padded = F.pad(t_704, [1, 1, 1, 1], value=0)
  589. t_705 = self.n_Conv_150(t_704_padded)
  590. t_706 = F.relu(t_705)
  591. t_707 = self.n_Conv_151(t_706)
  592. t_708 = torch.add(t_707, t_702)
  593. t_709 = F.relu(t_708)
  594. t_710 = self.n_Conv_152(t_709)
  595. t_711 = F.relu(t_710)
  596. t_711_padded = F.pad(t_711, [1, 1, 1, 1], value=0)
  597. t_712 = self.n_Conv_153(t_711_padded)
  598. t_713 = F.relu(t_712)
  599. t_714 = self.n_Conv_154(t_713)
  600. t_715 = torch.add(t_714, t_709)
  601. t_716 = F.relu(t_715)
  602. t_717 = self.n_Conv_155(t_716)
  603. t_718 = F.relu(t_717)
  604. t_718_padded = F.pad(t_718, [1, 1, 1, 1], value=0)
  605. t_719 = self.n_Conv_156(t_718_padded)
  606. t_720 = F.relu(t_719)
  607. t_721 = self.n_Conv_157(t_720)
  608. t_722 = torch.add(t_721, t_716)
  609. t_723 = F.relu(t_722)
  610. t_724 = self.n_Conv_158(t_723)
  611. t_725 = self.n_Conv_159(t_723)
  612. t_726 = F.relu(t_725)
  613. t_726_padded = F.pad(t_726, [0, 1, 0, 1], value=0)
  614. t_727 = self.n_Conv_160(t_726_padded)
  615. t_728 = F.relu(t_727)
  616. t_729 = self.n_Conv_161(t_728)
  617. t_730 = torch.add(t_729, t_724)
  618. t_731 = F.relu(t_730)
  619. t_732 = self.n_Conv_162(t_731)
  620. t_733 = F.relu(t_732)
  621. t_733_padded = F.pad(t_733, [1, 1, 1, 1], value=0)
  622. t_734 = self.n_Conv_163(t_733_padded)
  623. t_735 = F.relu(t_734)
  624. t_736 = self.n_Conv_164(t_735)
  625. t_737 = torch.add(t_736, t_731)
  626. t_738 = F.relu(t_737)
  627. t_739 = self.n_Conv_165(t_738)
  628. t_740 = F.relu(t_739)
  629. t_740_padded = F.pad(t_740, [1, 1, 1, 1], value=0)
  630. t_741 = self.n_Conv_166(t_740_padded)
  631. t_742 = F.relu(t_741)
  632. t_743 = self.n_Conv_167(t_742)
  633. t_744 = torch.add(t_743, t_738)
  634. t_745 = F.relu(t_744)
  635. t_746 = self.n_Conv_168(t_745)
  636. t_747 = self.n_Conv_169(t_745)
  637. t_748 = F.relu(t_747)
  638. t_748_padded = F.pad(t_748, [0, 1, 0, 1], value=0)
  639. t_749 = self.n_Conv_170(t_748_padded)
  640. t_750 = F.relu(t_749)
  641. t_751 = self.n_Conv_171(t_750)
  642. t_752 = torch.add(t_751, t_746)
  643. t_753 = F.relu(t_752)
  644. t_754 = self.n_Conv_172(t_753)
  645. t_755 = F.relu(t_754)
  646. t_755_padded = F.pad(t_755, [1, 1, 1, 1], value=0)
  647. t_756 = self.n_Conv_173(t_755_padded)
  648. t_757 = F.relu(t_756)
  649. t_758 = self.n_Conv_174(t_757)
  650. t_759 = torch.add(t_758, t_753)
  651. t_760 = F.relu(t_759)
  652. t_761 = self.n_Conv_175(t_760)
  653. t_762 = F.relu(t_761)
  654. t_762_padded = F.pad(t_762, [1, 1, 1, 1], value=0)
  655. t_763 = self.n_Conv_176(t_762_padded)
  656. t_764 = F.relu(t_763)
  657. t_765 = self.n_Conv_177(t_764)
  658. t_766 = torch.add(t_765, t_760)
  659. t_767 = F.relu(t_766)
  660. t_768 = self.n_Conv_178(t_767)
  661. t_769 = F.avg_pool2d(t_768, kernel_size=t_768.shape[-2:])
  662. t_770 = torch.squeeze(t_769, 3)
  663. t_770 = torch.squeeze(t_770, 2)
  664. t_771 = torch.sigmoid(t_770)
  665. return t_771
  666. def load_state_dict(self, state_dict, **kwargs):
  667. self.tags = state_dict.get('tags', [])
  668. super(DeepDanbooruModel, self).load_state_dict({k: v for k, v in state_dict.items() if k != 'tags'})