123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678 |
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from modules import devices
- # see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more
- class DeepDanbooruModel(nn.Module):
- def __init__(self):
- super(DeepDanbooruModel, self).__init__()
- self.tags = []
- self.n_Conv_0 = nn.Conv2d(kernel_size=(7, 7), in_channels=3, out_channels=64, stride=(2, 2))
- self.n_MaxPool_0 = nn.MaxPool2d(kernel_size=(3, 3), stride=(2, 2))
- self.n_Conv_1 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
- self.n_Conv_2 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=64)
- self.n_Conv_3 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
- self.n_Conv_4 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
- self.n_Conv_5 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
- self.n_Conv_6 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
- self.n_Conv_7 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
- self.n_Conv_8 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=64)
- self.n_Conv_9 = nn.Conv2d(kernel_size=(3, 3), in_channels=64, out_channels=64)
- self.n_Conv_10 = nn.Conv2d(kernel_size=(1, 1), in_channels=64, out_channels=256)
- self.n_Conv_11 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=512, stride=(2, 2))
- self.n_Conv_12 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=128)
- self.n_Conv_13 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128, stride=(2, 2))
- self.n_Conv_14 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
- self.n_Conv_15 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
- self.n_Conv_16 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
- self.n_Conv_17 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
- self.n_Conv_18 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
- self.n_Conv_19 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
- self.n_Conv_20 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
- self.n_Conv_21 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
- self.n_Conv_22 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
- self.n_Conv_23 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
- self.n_Conv_24 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
- self.n_Conv_25 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
- self.n_Conv_26 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
- self.n_Conv_27 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
- self.n_Conv_28 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
- self.n_Conv_29 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
- self.n_Conv_30 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
- self.n_Conv_31 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
- self.n_Conv_32 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
- self.n_Conv_33 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=128)
- self.n_Conv_34 = nn.Conv2d(kernel_size=(3, 3), in_channels=128, out_channels=128)
- self.n_Conv_35 = nn.Conv2d(kernel_size=(1, 1), in_channels=128, out_channels=512)
- self.n_Conv_36 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=1024, stride=(2, 2))
- self.n_Conv_37 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=256)
- self.n_Conv_38 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
- self.n_Conv_39 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_40 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_41 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_42 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_43 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_44 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_45 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_46 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_47 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_48 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_49 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_50 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_51 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_52 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_53 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_54 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_55 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_56 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_57 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_58 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_59 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_60 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_61 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_62 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_63 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_64 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_65 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_66 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_67 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_68 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_69 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_70 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_71 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_72 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_73 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_74 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_75 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_76 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_77 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_78 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_79 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_80 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_81 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_82 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_83 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_84 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_85 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_86 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_87 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_88 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_89 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_90 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_91 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_92 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_93 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_94 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_95 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_96 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_97 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_98 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256, stride=(2, 2))
- self.n_Conv_99 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_100 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=1024, stride=(2, 2))
- self.n_Conv_101 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_102 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_103 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_104 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_105 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_106 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_107 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_108 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_109 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_110 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_111 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_112 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_113 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_114 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_115 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_116 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_117 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_118 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_119 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_120 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_121 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_122 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_123 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_124 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_125 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_126 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_127 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_128 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_129 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_130 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_131 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_132 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_133 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_134 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_135 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_136 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_137 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_138 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_139 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_140 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_141 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_142 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_143 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_144 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_145 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_146 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_147 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_148 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_149 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_150 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_151 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_152 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_153 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_154 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_155 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=256)
- self.n_Conv_156 = nn.Conv2d(kernel_size=(3, 3), in_channels=256, out_channels=256)
- self.n_Conv_157 = nn.Conv2d(kernel_size=(1, 1), in_channels=256, out_channels=1024)
- self.n_Conv_158 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=2048, stride=(2, 2))
- self.n_Conv_159 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=512)
- self.n_Conv_160 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512, stride=(2, 2))
- self.n_Conv_161 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
- self.n_Conv_162 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
- self.n_Conv_163 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
- self.n_Conv_164 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
- self.n_Conv_165 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=512)
- self.n_Conv_166 = nn.Conv2d(kernel_size=(3, 3), in_channels=512, out_channels=512)
- self.n_Conv_167 = nn.Conv2d(kernel_size=(1, 1), in_channels=512, out_channels=2048)
- self.n_Conv_168 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=4096, stride=(2, 2))
- self.n_Conv_169 = nn.Conv2d(kernel_size=(1, 1), in_channels=2048, out_channels=1024)
- self.n_Conv_170 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024, stride=(2, 2))
- self.n_Conv_171 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
- self.n_Conv_172 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
- self.n_Conv_173 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
- self.n_Conv_174 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
- self.n_Conv_175 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=1024)
- self.n_Conv_176 = nn.Conv2d(kernel_size=(3, 3), in_channels=1024, out_channels=1024)
- self.n_Conv_177 = nn.Conv2d(kernel_size=(1, 1), in_channels=1024, out_channels=4096)
- self.n_Conv_178 = nn.Conv2d(kernel_size=(1, 1), in_channels=4096, out_channels=9176, bias=False)
- def forward(self, *inputs):
- t_358, = inputs
- t_359 = t_358.permute(*[0, 3, 1, 2])
- t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
- t_360 = self.n_Conv_0(t_359_padded.to(self.n_Conv_0.bias.dtype) if devices.unet_needs_upcast else t_359_padded)
- t_361 = F.relu(t_360)
- t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
- t_362 = self.n_MaxPool_0(t_361)
- t_363 = self.n_Conv_1(t_362)
- t_364 = self.n_Conv_2(t_362)
- t_365 = F.relu(t_364)
- t_365_padded = F.pad(t_365, [1, 1, 1, 1], value=0)
- t_366 = self.n_Conv_3(t_365_padded)
- t_367 = F.relu(t_366)
- t_368 = self.n_Conv_4(t_367)
- t_369 = torch.add(t_368, t_363)
- t_370 = F.relu(t_369)
- t_371 = self.n_Conv_5(t_370)
- t_372 = F.relu(t_371)
- t_372_padded = F.pad(t_372, [1, 1, 1, 1], value=0)
- t_373 = self.n_Conv_6(t_372_padded)
- t_374 = F.relu(t_373)
- t_375 = self.n_Conv_7(t_374)
- t_376 = torch.add(t_375, t_370)
- t_377 = F.relu(t_376)
- t_378 = self.n_Conv_8(t_377)
- t_379 = F.relu(t_378)
- t_379_padded = F.pad(t_379, [1, 1, 1, 1], value=0)
- t_380 = self.n_Conv_9(t_379_padded)
- t_381 = F.relu(t_380)
- t_382 = self.n_Conv_10(t_381)
- t_383 = torch.add(t_382, t_377)
- t_384 = F.relu(t_383)
- t_385 = self.n_Conv_11(t_384)
- t_386 = self.n_Conv_12(t_384)
- t_387 = F.relu(t_386)
- t_387_padded = F.pad(t_387, [0, 1, 0, 1], value=0)
- t_388 = self.n_Conv_13(t_387_padded)
- t_389 = F.relu(t_388)
- t_390 = self.n_Conv_14(t_389)
- t_391 = torch.add(t_390, t_385)
- t_392 = F.relu(t_391)
- t_393 = self.n_Conv_15(t_392)
- t_394 = F.relu(t_393)
- t_394_padded = F.pad(t_394, [1, 1, 1, 1], value=0)
- t_395 = self.n_Conv_16(t_394_padded)
- t_396 = F.relu(t_395)
- t_397 = self.n_Conv_17(t_396)
- t_398 = torch.add(t_397, t_392)
- t_399 = F.relu(t_398)
- t_400 = self.n_Conv_18(t_399)
- t_401 = F.relu(t_400)
- t_401_padded = F.pad(t_401, [1, 1, 1, 1], value=0)
- t_402 = self.n_Conv_19(t_401_padded)
- t_403 = F.relu(t_402)
- t_404 = self.n_Conv_20(t_403)
- t_405 = torch.add(t_404, t_399)
- t_406 = F.relu(t_405)
- t_407 = self.n_Conv_21(t_406)
- t_408 = F.relu(t_407)
- t_408_padded = F.pad(t_408, [1, 1, 1, 1], value=0)
- t_409 = self.n_Conv_22(t_408_padded)
- t_410 = F.relu(t_409)
- t_411 = self.n_Conv_23(t_410)
- t_412 = torch.add(t_411, t_406)
- t_413 = F.relu(t_412)
- t_414 = self.n_Conv_24(t_413)
- t_415 = F.relu(t_414)
- t_415_padded = F.pad(t_415, [1, 1, 1, 1], value=0)
- t_416 = self.n_Conv_25(t_415_padded)
- t_417 = F.relu(t_416)
- t_418 = self.n_Conv_26(t_417)
- t_419 = torch.add(t_418, t_413)
- t_420 = F.relu(t_419)
- t_421 = self.n_Conv_27(t_420)
- t_422 = F.relu(t_421)
- t_422_padded = F.pad(t_422, [1, 1, 1, 1], value=0)
- t_423 = self.n_Conv_28(t_422_padded)
- t_424 = F.relu(t_423)
- t_425 = self.n_Conv_29(t_424)
- t_426 = torch.add(t_425, t_420)
- t_427 = F.relu(t_426)
- t_428 = self.n_Conv_30(t_427)
- t_429 = F.relu(t_428)
- t_429_padded = F.pad(t_429, [1, 1, 1, 1], value=0)
- t_430 = self.n_Conv_31(t_429_padded)
- t_431 = F.relu(t_430)
- t_432 = self.n_Conv_32(t_431)
- t_433 = torch.add(t_432, t_427)
- t_434 = F.relu(t_433)
- t_435 = self.n_Conv_33(t_434)
- t_436 = F.relu(t_435)
- t_436_padded = F.pad(t_436, [1, 1, 1, 1], value=0)
- t_437 = self.n_Conv_34(t_436_padded)
- t_438 = F.relu(t_437)
- t_439 = self.n_Conv_35(t_438)
- t_440 = torch.add(t_439, t_434)
- t_441 = F.relu(t_440)
- t_442 = self.n_Conv_36(t_441)
- t_443 = self.n_Conv_37(t_441)
- t_444 = F.relu(t_443)
- t_444_padded = F.pad(t_444, [0, 1, 0, 1], value=0)
- t_445 = self.n_Conv_38(t_444_padded)
- t_446 = F.relu(t_445)
- t_447 = self.n_Conv_39(t_446)
- t_448 = torch.add(t_447, t_442)
- t_449 = F.relu(t_448)
- t_450 = self.n_Conv_40(t_449)
- t_451 = F.relu(t_450)
- t_451_padded = F.pad(t_451, [1, 1, 1, 1], value=0)
- t_452 = self.n_Conv_41(t_451_padded)
- t_453 = F.relu(t_452)
- t_454 = self.n_Conv_42(t_453)
- t_455 = torch.add(t_454, t_449)
- t_456 = F.relu(t_455)
- t_457 = self.n_Conv_43(t_456)
- t_458 = F.relu(t_457)
- t_458_padded = F.pad(t_458, [1, 1, 1, 1], value=0)
- t_459 = self.n_Conv_44(t_458_padded)
- t_460 = F.relu(t_459)
- t_461 = self.n_Conv_45(t_460)
- t_462 = torch.add(t_461, t_456)
- t_463 = F.relu(t_462)
- t_464 = self.n_Conv_46(t_463)
- t_465 = F.relu(t_464)
- t_465_padded = F.pad(t_465, [1, 1, 1, 1], value=0)
- t_466 = self.n_Conv_47(t_465_padded)
- t_467 = F.relu(t_466)
- t_468 = self.n_Conv_48(t_467)
- t_469 = torch.add(t_468, t_463)
- t_470 = F.relu(t_469)
- t_471 = self.n_Conv_49(t_470)
- t_472 = F.relu(t_471)
- t_472_padded = F.pad(t_472, [1, 1, 1, 1], value=0)
- t_473 = self.n_Conv_50(t_472_padded)
- t_474 = F.relu(t_473)
- t_475 = self.n_Conv_51(t_474)
- t_476 = torch.add(t_475, t_470)
- t_477 = F.relu(t_476)
- t_478 = self.n_Conv_52(t_477)
- t_479 = F.relu(t_478)
- t_479_padded = F.pad(t_479, [1, 1, 1, 1], value=0)
- t_480 = self.n_Conv_53(t_479_padded)
- t_481 = F.relu(t_480)
- t_482 = self.n_Conv_54(t_481)
- t_483 = torch.add(t_482, t_477)
- t_484 = F.relu(t_483)
- t_485 = self.n_Conv_55(t_484)
- t_486 = F.relu(t_485)
- t_486_padded = F.pad(t_486, [1, 1, 1, 1], value=0)
- t_487 = self.n_Conv_56(t_486_padded)
- t_488 = F.relu(t_487)
- t_489 = self.n_Conv_57(t_488)
- t_490 = torch.add(t_489, t_484)
- t_491 = F.relu(t_490)
- t_492 = self.n_Conv_58(t_491)
- t_493 = F.relu(t_492)
- t_493_padded = F.pad(t_493, [1, 1, 1, 1], value=0)
- t_494 = self.n_Conv_59(t_493_padded)
- t_495 = F.relu(t_494)
- t_496 = self.n_Conv_60(t_495)
- t_497 = torch.add(t_496, t_491)
- t_498 = F.relu(t_497)
- t_499 = self.n_Conv_61(t_498)
- t_500 = F.relu(t_499)
- t_500_padded = F.pad(t_500, [1, 1, 1, 1], value=0)
- t_501 = self.n_Conv_62(t_500_padded)
- t_502 = F.relu(t_501)
- t_503 = self.n_Conv_63(t_502)
- t_504 = torch.add(t_503, t_498)
- t_505 = F.relu(t_504)
- t_506 = self.n_Conv_64(t_505)
- t_507 = F.relu(t_506)
- t_507_padded = F.pad(t_507, [1, 1, 1, 1], value=0)
- t_508 = self.n_Conv_65(t_507_padded)
- t_509 = F.relu(t_508)
- t_510 = self.n_Conv_66(t_509)
- t_511 = torch.add(t_510, t_505)
- t_512 = F.relu(t_511)
- t_513 = self.n_Conv_67(t_512)
- t_514 = F.relu(t_513)
- t_514_padded = F.pad(t_514, [1, 1, 1, 1], value=0)
- t_515 = self.n_Conv_68(t_514_padded)
- t_516 = F.relu(t_515)
- t_517 = self.n_Conv_69(t_516)
- t_518 = torch.add(t_517, t_512)
- t_519 = F.relu(t_518)
- t_520 = self.n_Conv_70(t_519)
- t_521 = F.relu(t_520)
- t_521_padded = F.pad(t_521, [1, 1, 1, 1], value=0)
- t_522 = self.n_Conv_71(t_521_padded)
- t_523 = F.relu(t_522)
- t_524 = self.n_Conv_72(t_523)
- t_525 = torch.add(t_524, t_519)
- t_526 = F.relu(t_525)
- t_527 = self.n_Conv_73(t_526)
- t_528 = F.relu(t_527)
- t_528_padded = F.pad(t_528, [1, 1, 1, 1], value=0)
- t_529 = self.n_Conv_74(t_528_padded)
- t_530 = F.relu(t_529)
- t_531 = self.n_Conv_75(t_530)
- t_532 = torch.add(t_531, t_526)
- t_533 = F.relu(t_532)
- t_534 = self.n_Conv_76(t_533)
- t_535 = F.relu(t_534)
- t_535_padded = F.pad(t_535, [1, 1, 1, 1], value=0)
- t_536 = self.n_Conv_77(t_535_padded)
- t_537 = F.relu(t_536)
- t_538 = self.n_Conv_78(t_537)
- t_539 = torch.add(t_538, t_533)
- t_540 = F.relu(t_539)
- t_541 = self.n_Conv_79(t_540)
- t_542 = F.relu(t_541)
- t_542_padded = F.pad(t_542, [1, 1, 1, 1], value=0)
- t_543 = self.n_Conv_80(t_542_padded)
- t_544 = F.relu(t_543)
- t_545 = self.n_Conv_81(t_544)
- t_546 = torch.add(t_545, t_540)
- t_547 = F.relu(t_546)
- t_548 = self.n_Conv_82(t_547)
- t_549 = F.relu(t_548)
- t_549_padded = F.pad(t_549, [1, 1, 1, 1], value=0)
- t_550 = self.n_Conv_83(t_549_padded)
- t_551 = F.relu(t_550)
- t_552 = self.n_Conv_84(t_551)
- t_553 = torch.add(t_552, t_547)
- t_554 = F.relu(t_553)
- t_555 = self.n_Conv_85(t_554)
- t_556 = F.relu(t_555)
- t_556_padded = F.pad(t_556, [1, 1, 1, 1], value=0)
- t_557 = self.n_Conv_86(t_556_padded)
- t_558 = F.relu(t_557)
- t_559 = self.n_Conv_87(t_558)
- t_560 = torch.add(t_559, t_554)
- t_561 = F.relu(t_560)
- t_562 = self.n_Conv_88(t_561)
- t_563 = F.relu(t_562)
- t_563_padded = F.pad(t_563, [1, 1, 1, 1], value=0)
- t_564 = self.n_Conv_89(t_563_padded)
- t_565 = F.relu(t_564)
- t_566 = self.n_Conv_90(t_565)
- t_567 = torch.add(t_566, t_561)
- t_568 = F.relu(t_567)
- t_569 = self.n_Conv_91(t_568)
- t_570 = F.relu(t_569)
- t_570_padded = F.pad(t_570, [1, 1, 1, 1], value=0)
- t_571 = self.n_Conv_92(t_570_padded)
- t_572 = F.relu(t_571)
- t_573 = self.n_Conv_93(t_572)
- t_574 = torch.add(t_573, t_568)
- t_575 = F.relu(t_574)
- t_576 = self.n_Conv_94(t_575)
- t_577 = F.relu(t_576)
- t_577_padded = F.pad(t_577, [1, 1, 1, 1], value=0)
- t_578 = self.n_Conv_95(t_577_padded)
- t_579 = F.relu(t_578)
- t_580 = self.n_Conv_96(t_579)
- t_581 = torch.add(t_580, t_575)
- t_582 = F.relu(t_581)
- t_583 = self.n_Conv_97(t_582)
- t_584 = F.relu(t_583)
- t_584_padded = F.pad(t_584, [0, 1, 0, 1], value=0)
- t_585 = self.n_Conv_98(t_584_padded)
- t_586 = F.relu(t_585)
- t_587 = self.n_Conv_99(t_586)
- t_588 = self.n_Conv_100(t_582)
- t_589 = torch.add(t_587, t_588)
- t_590 = F.relu(t_589)
- t_591 = self.n_Conv_101(t_590)
- t_592 = F.relu(t_591)
- t_592_padded = F.pad(t_592, [1, 1, 1, 1], value=0)
- t_593 = self.n_Conv_102(t_592_padded)
- t_594 = F.relu(t_593)
- t_595 = self.n_Conv_103(t_594)
- t_596 = torch.add(t_595, t_590)
- t_597 = F.relu(t_596)
- t_598 = self.n_Conv_104(t_597)
- t_599 = F.relu(t_598)
- t_599_padded = F.pad(t_599, [1, 1, 1, 1], value=0)
- t_600 = self.n_Conv_105(t_599_padded)
- t_601 = F.relu(t_600)
- t_602 = self.n_Conv_106(t_601)
- t_603 = torch.add(t_602, t_597)
- t_604 = F.relu(t_603)
- t_605 = self.n_Conv_107(t_604)
- t_606 = F.relu(t_605)
- t_606_padded = F.pad(t_606, [1, 1, 1, 1], value=0)
- t_607 = self.n_Conv_108(t_606_padded)
- t_608 = F.relu(t_607)
- t_609 = self.n_Conv_109(t_608)
- t_610 = torch.add(t_609, t_604)
- t_611 = F.relu(t_610)
- t_612 = self.n_Conv_110(t_611)
- t_613 = F.relu(t_612)
- t_613_padded = F.pad(t_613, [1, 1, 1, 1], value=0)
- t_614 = self.n_Conv_111(t_613_padded)
- t_615 = F.relu(t_614)
- t_616 = self.n_Conv_112(t_615)
- t_617 = torch.add(t_616, t_611)
- t_618 = F.relu(t_617)
- t_619 = self.n_Conv_113(t_618)
- t_620 = F.relu(t_619)
- t_620_padded = F.pad(t_620, [1, 1, 1, 1], value=0)
- t_621 = self.n_Conv_114(t_620_padded)
- t_622 = F.relu(t_621)
- t_623 = self.n_Conv_115(t_622)
- t_624 = torch.add(t_623, t_618)
- t_625 = F.relu(t_624)
- t_626 = self.n_Conv_116(t_625)
- t_627 = F.relu(t_626)
- t_627_padded = F.pad(t_627, [1, 1, 1, 1], value=0)
- t_628 = self.n_Conv_117(t_627_padded)
- t_629 = F.relu(t_628)
- t_630 = self.n_Conv_118(t_629)
- t_631 = torch.add(t_630, t_625)
- t_632 = F.relu(t_631)
- t_633 = self.n_Conv_119(t_632)
- t_634 = F.relu(t_633)
- t_634_padded = F.pad(t_634, [1, 1, 1, 1], value=0)
- t_635 = self.n_Conv_120(t_634_padded)
- t_636 = F.relu(t_635)
- t_637 = self.n_Conv_121(t_636)
- t_638 = torch.add(t_637, t_632)
- t_639 = F.relu(t_638)
- t_640 = self.n_Conv_122(t_639)
- t_641 = F.relu(t_640)
- t_641_padded = F.pad(t_641, [1, 1, 1, 1], value=0)
- t_642 = self.n_Conv_123(t_641_padded)
- t_643 = F.relu(t_642)
- t_644 = self.n_Conv_124(t_643)
- t_645 = torch.add(t_644, t_639)
- t_646 = F.relu(t_645)
- t_647 = self.n_Conv_125(t_646)
- t_648 = F.relu(t_647)
- t_648_padded = F.pad(t_648, [1, 1, 1, 1], value=0)
- t_649 = self.n_Conv_126(t_648_padded)
- t_650 = F.relu(t_649)
- t_651 = self.n_Conv_127(t_650)
- t_652 = torch.add(t_651, t_646)
- t_653 = F.relu(t_652)
- t_654 = self.n_Conv_128(t_653)
- t_655 = F.relu(t_654)
- t_655_padded = F.pad(t_655, [1, 1, 1, 1], value=0)
- t_656 = self.n_Conv_129(t_655_padded)
- t_657 = F.relu(t_656)
- t_658 = self.n_Conv_130(t_657)
- t_659 = torch.add(t_658, t_653)
- t_660 = F.relu(t_659)
- t_661 = self.n_Conv_131(t_660)
- t_662 = F.relu(t_661)
- t_662_padded = F.pad(t_662, [1, 1, 1, 1], value=0)
- t_663 = self.n_Conv_132(t_662_padded)
- t_664 = F.relu(t_663)
- t_665 = self.n_Conv_133(t_664)
- t_666 = torch.add(t_665, t_660)
- t_667 = F.relu(t_666)
- t_668 = self.n_Conv_134(t_667)
- t_669 = F.relu(t_668)
- t_669_padded = F.pad(t_669, [1, 1, 1, 1], value=0)
- t_670 = self.n_Conv_135(t_669_padded)
- t_671 = F.relu(t_670)
- t_672 = self.n_Conv_136(t_671)
- t_673 = torch.add(t_672, t_667)
- t_674 = F.relu(t_673)
- t_675 = self.n_Conv_137(t_674)
- t_676 = F.relu(t_675)
- t_676_padded = F.pad(t_676, [1, 1, 1, 1], value=0)
- t_677 = self.n_Conv_138(t_676_padded)
- t_678 = F.relu(t_677)
- t_679 = self.n_Conv_139(t_678)
- t_680 = torch.add(t_679, t_674)
- t_681 = F.relu(t_680)
- t_682 = self.n_Conv_140(t_681)
- t_683 = F.relu(t_682)
- t_683_padded = F.pad(t_683, [1, 1, 1, 1], value=0)
- t_684 = self.n_Conv_141(t_683_padded)
- t_685 = F.relu(t_684)
- t_686 = self.n_Conv_142(t_685)
- t_687 = torch.add(t_686, t_681)
- t_688 = F.relu(t_687)
- t_689 = self.n_Conv_143(t_688)
- t_690 = F.relu(t_689)
- t_690_padded = F.pad(t_690, [1, 1, 1, 1], value=0)
- t_691 = self.n_Conv_144(t_690_padded)
- t_692 = F.relu(t_691)
- t_693 = self.n_Conv_145(t_692)
- t_694 = torch.add(t_693, t_688)
- t_695 = F.relu(t_694)
- t_696 = self.n_Conv_146(t_695)
- t_697 = F.relu(t_696)
- t_697_padded = F.pad(t_697, [1, 1, 1, 1], value=0)
- t_698 = self.n_Conv_147(t_697_padded)
- t_699 = F.relu(t_698)
- t_700 = self.n_Conv_148(t_699)
- t_701 = torch.add(t_700, t_695)
- t_702 = F.relu(t_701)
- t_703 = self.n_Conv_149(t_702)
- t_704 = F.relu(t_703)
- t_704_padded = F.pad(t_704, [1, 1, 1, 1], value=0)
- t_705 = self.n_Conv_150(t_704_padded)
- t_706 = F.relu(t_705)
- t_707 = self.n_Conv_151(t_706)
- t_708 = torch.add(t_707, t_702)
- t_709 = F.relu(t_708)
- t_710 = self.n_Conv_152(t_709)
- t_711 = F.relu(t_710)
- t_711_padded = F.pad(t_711, [1, 1, 1, 1], value=0)
- t_712 = self.n_Conv_153(t_711_padded)
- t_713 = F.relu(t_712)
- t_714 = self.n_Conv_154(t_713)
- t_715 = torch.add(t_714, t_709)
- t_716 = F.relu(t_715)
- t_717 = self.n_Conv_155(t_716)
- t_718 = F.relu(t_717)
- t_718_padded = F.pad(t_718, [1, 1, 1, 1], value=0)
- t_719 = self.n_Conv_156(t_718_padded)
- t_720 = F.relu(t_719)
- t_721 = self.n_Conv_157(t_720)
- t_722 = torch.add(t_721, t_716)
- t_723 = F.relu(t_722)
- t_724 = self.n_Conv_158(t_723)
- t_725 = self.n_Conv_159(t_723)
- t_726 = F.relu(t_725)
- t_726_padded = F.pad(t_726, [0, 1, 0, 1], value=0)
- t_727 = self.n_Conv_160(t_726_padded)
- t_728 = F.relu(t_727)
- t_729 = self.n_Conv_161(t_728)
- t_730 = torch.add(t_729, t_724)
- t_731 = F.relu(t_730)
- t_732 = self.n_Conv_162(t_731)
- t_733 = F.relu(t_732)
- t_733_padded = F.pad(t_733, [1, 1, 1, 1], value=0)
- t_734 = self.n_Conv_163(t_733_padded)
- t_735 = F.relu(t_734)
- t_736 = self.n_Conv_164(t_735)
- t_737 = torch.add(t_736, t_731)
- t_738 = F.relu(t_737)
- t_739 = self.n_Conv_165(t_738)
- t_740 = F.relu(t_739)
- t_740_padded = F.pad(t_740, [1, 1, 1, 1], value=0)
- t_741 = self.n_Conv_166(t_740_padded)
- t_742 = F.relu(t_741)
- t_743 = self.n_Conv_167(t_742)
- t_744 = torch.add(t_743, t_738)
- t_745 = F.relu(t_744)
- t_746 = self.n_Conv_168(t_745)
- t_747 = self.n_Conv_169(t_745)
- t_748 = F.relu(t_747)
- t_748_padded = F.pad(t_748, [0, 1, 0, 1], value=0)
- t_749 = self.n_Conv_170(t_748_padded)
- t_750 = F.relu(t_749)
- t_751 = self.n_Conv_171(t_750)
- t_752 = torch.add(t_751, t_746)
- t_753 = F.relu(t_752)
- t_754 = self.n_Conv_172(t_753)
- t_755 = F.relu(t_754)
- t_755_padded = F.pad(t_755, [1, 1, 1, 1], value=0)
- t_756 = self.n_Conv_173(t_755_padded)
- t_757 = F.relu(t_756)
- t_758 = self.n_Conv_174(t_757)
- t_759 = torch.add(t_758, t_753)
- t_760 = F.relu(t_759)
- t_761 = self.n_Conv_175(t_760)
- t_762 = F.relu(t_761)
- t_762_padded = F.pad(t_762, [1, 1, 1, 1], value=0)
- t_763 = self.n_Conv_176(t_762_padded)
- t_764 = F.relu(t_763)
- t_765 = self.n_Conv_177(t_764)
- t_766 = torch.add(t_765, t_760)
- t_767 = F.relu(t_766)
- t_768 = self.n_Conv_178(t_767)
- t_769 = F.avg_pool2d(t_768, kernel_size=t_768.shape[-2:])
- t_770 = torch.squeeze(t_769, 3)
- t_770 = torch.squeeze(t_770, 2)
- t_771 = torch.sigmoid(t_770)
- return t_771
- def load_state_dict(self, state_dict, **kwargs):
- self.tags = state_dict.get('tags', [])
- super(DeepDanbooruModel, self).load_state_dict({k: v for k, v in state_dict.items() if k != 'tags'})
|