train.py 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634
  1. import argparse
  2. import logging
  3. import math
  4. import os
  5. import random
  6. import time
  7. from copy import deepcopy
  8. from pathlib import Path
  9. from threading import Thread
  10. import numpy as np
  11. import torch.distributed as dist
  12. import torch.nn as nn
  13. import torch.nn.functional as F
  14. import torch.optim as optim
  15. import torch.optim.lr_scheduler as lr_scheduler
  16. import torch.utils.data
  17. import yaml
  18. from torch.cuda import amp
  19. from torch.nn.parallel import DistributedDataParallel as DDP
  20. from torch.utils.tensorboard import SummaryWriter
  21. from tqdm import tqdm
  22. import test # import test.py to get mAP after each epoch
  23. from models.experimental import attempt_load
  24. from models.yolo import Model
  25. from utils.autoanchor import check_anchors
  26. from utils.datasets import create_dataloader
  27. from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
  28. fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
  29. check_requirements, print_mutation, set_logging, one_cycle, colorstr
  30. from utils.google_utils import attempt_download
  31. from utils.loss import ComputeLoss
  32. from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
  33. from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
  34. from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
  35. logger = logging.getLogger(__name__)
  36. def train(hyp, opt, device, tb_writer=None):
  37. logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
  38. save_dir, epochs, batch_size, total_batch_size, weights, rank = \
  39. Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
  40. # Directories
  41. wdir = save_dir / 'weights'
  42. wdir.mkdir(parents=True, exist_ok=True) # make dir
  43. last = wdir / 'last.pt'
  44. best = wdir / 'best.pt'
  45. results_file = save_dir / 'results.txt'
  46. # Save run settings
  47. with open(save_dir / 'hyp.yaml', 'w') as f:
  48. yaml.dump(hyp, f, sort_keys=False)
  49. with open(save_dir / 'opt.yaml', 'w') as f:
  50. yaml.dump(vars(opt), f, sort_keys=False)
  51. # Configure
  52. plots = not opt.evolve # create plots
  53. cuda = device.type != 'cpu'
  54. init_seeds(2 + rank)
  55. with open(opt.data) as f:
  56. data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
  57. #print("---------------------------------")
  58. #print(data_dict)
  59. #print("---------------------------------")
  60. is_coco = opt.data.endswith('coco.yaml')
  61. # Logging- Doing this before checking the dataset. Might update data_dict
  62. loggers = {'wandb': None} # loggers dict
  63. if rank in [-1, 0]:
  64. opt.hyp = hyp # add hyperparameters
  65. run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
  66. wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
  67. loggers['wandb'] = wandb_logger.wandb
  68. data_dict = wandb_logger.data_dict
  69. if wandb_logger.wandb:
  70. weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming
  71. nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
  72. names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
  73. assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
  74. # Model
  75. pretrained = weights.endswith('.pt')
  76. if pretrained:
  77. with torch_distributed_zero_first(rank):
  78. attempt_download(weights) # download if not found locally
  79. ckpt = torch.load(weights, map_location=device) # load checkpoint
  80. model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  81. exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
  82. state_dict = ckpt['model'].float().state_dict() # to FP32
  83. state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
  84. model.load_state_dict(state_dict, strict=False) # load
  85. logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
  86. else:
  87. model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
  88. with torch_distributed_zero_first(rank):
  89. check_dataset(data_dict) # check
  90. train_path = data_dict['train']
  91. test_path = data_dict['val']
  92. # Freeze
  93. freeze = [] # parameter names to freeze (full or partial)
  94. for k, v in model.named_parameters():
  95. v.requires_grad = True # train all layers
  96. if any(x in k for x in freeze):
  97. print('freezing %s' % k)
  98. v.requires_grad = False
  99. # Optimizer
  100. nbs = 64 # nominal batch size
  101. accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
  102. hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
  103. logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
  104. pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
  105. for k, v in model.named_modules():
  106. if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
  107. pg2.append(v.bias) # biases
  108. if isinstance(v, nn.BatchNorm2d):
  109. pg0.append(v.weight) # no decay
  110. elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
  111. pg1.append(v.weight) # apply decay
  112. if opt.adam:
  113. optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
  114. else:
  115. optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
  116. optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
  117. optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
  118. logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
  119. del pg0, pg1, pg2
  120. # Scheduler https://arxiv.org/pdf/1812.01187.pdf
  121. # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
  122. if opt.linear_lr:
  123. lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
  124. else:
  125. lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
  126. scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
  127. # plot_lr_scheduler(optimizer, scheduler, epochs)
  128. # EMA
  129. ema = ModelEMA(model) if rank in [-1, 0] else None
  130. # Resume
  131. start_epoch, best_fitness = 0, 0.0
  132. if pretrained:
  133. # Optimizer
  134. if ckpt['optimizer'] is not None:
  135. optimizer.load_state_dict(ckpt['optimizer'])
  136. best_fitness = ckpt['best_fitness']
  137. # EMA
  138. if ema and ckpt.get('ema'):
  139. ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
  140. ema.updates = ckpt['updates']
  141. # Results
  142. if ckpt.get('training_results') is not None:
  143. results_file.write_text(ckpt['training_results']) # write results.txt
  144. # Epochs
  145. start_epoch = ckpt['epoch'] + 1
  146. if opt.resume:
  147. assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
  148. if epochs < start_epoch:
  149. logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
  150. (weights, ckpt['epoch'], epochs))
  151. epochs += ckpt['epoch'] # finetune additional epochs
  152. del ckpt, state_dict
  153. # Image sizes
  154. gs = max(int(model.stride.max()), 32) # grid size (max stride)
  155. nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
  156. imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
  157. # DP mode
  158. if cuda and rank == -1 and torch.cuda.device_count() > 1:
  159. model = torch.nn.DataParallel(model)
  160. # SyncBatchNorm
  161. if opt.sync_bn and cuda and rank != -1:
  162. model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
  163. logger.info('Using SyncBatchNorm()')
  164. # Trainloader
  165. dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
  166. hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
  167. world_size=opt.world_size, workers=opt.workers,
  168. image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
  169. mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
  170. nb = len(dataloader) # number of batches
  171. assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
  172. # Process 0
  173. if rank in [-1, 0]:
  174. testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader
  175. hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
  176. world_size=opt.world_size, workers=opt.workers,
  177. pad=0.5, prefix=colorstr('val: '))[0]
  178. if not opt.resume:
  179. labels = np.concatenate(dataset.labels, 0)
  180. c = torch.tensor(labels[:, 0]) # classes
  181. # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
  182. # model._initialize_biases(cf.to(device))
  183. if plots:
  184. plot_labels(labels, names, save_dir, loggers)
  185. if tb_writer:
  186. tb_writer.add_histogram('classes', c, 0)
  187. # Anchors
  188. if not opt.noautoanchor:
  189. check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
  190. model.half().float() # pre-reduce anchor precision
  191. # DDP mode
  192. if cuda and rank != -1:
  193. model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
  194. # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
  195. find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
  196. # Model parameters
  197. hyp['box'] *= 3. / nl # scale to layers
  198. hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
  199. hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
  200. hyp['label_smoothing'] = opt.label_smoothing
  201. model.nc = nc # attach number of classes to model
  202. model.hyp = hyp # attach hyperparameters to model
  203. model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
  204. model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
  205. model.names = names
  206. # Start training
  207. t0 = time.time()
  208. nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
  209. # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
  210. maps = np.zeros(nc) # mAP per class
  211. results = (0, 0, 0, 0, 0, 0, 0) # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
  212. scheduler.last_epoch = start_epoch - 1 # do not move
  213. scaler = amp.GradScaler(enabled=cuda)
  214. compute_loss = ComputeLoss(model) # init loss class
  215. logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
  216. f'Using {dataloader.num_workers} dataloader workers\n'
  217. f'Logging results to {save_dir}\n'
  218. f'Starting training for {epochs} epochs...')
  219. for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
  220. model.train()
  221. # Update image weights (optional)
  222. if opt.image_weights:
  223. # Generate indices
  224. if rank in [-1, 0]:
  225. cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
  226. iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
  227. dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
  228. # Broadcast if DDP
  229. if rank != -1:
  230. indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
  231. dist.broadcast(indices, 0)
  232. if rank != 0:
  233. dataset.indices = indices.cpu().numpy()
  234. # Update mosaic border
  235. # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
  236. # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
  237. mloss = torch.zeros(4, device=device) # mean losses
  238. if rank != -1:
  239. dataloader.sampler.set_epoch(epoch)
  240. pbar = enumerate(dataloader)
  241. logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
  242. if rank in [-1, 0]:
  243. pbar = tqdm(pbar, total=nb) # progress bar
  244. optimizer.zero_grad()
  245. for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
  246. ni = i + nb * epoch # number integrated batches (since train start)
  247. imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
  248. # Warmup
  249. if ni <= nw:
  250. xi = [0, nw] # x interp
  251. # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
  252. accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
  253. for j, x in enumerate(optimizer.param_groups):
  254. # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
  255. x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
  256. if 'momentum' in x:
  257. x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
  258. # Multi-scale
  259. if opt.multi_scale:
  260. sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
  261. sf = sz / max(imgs.shape[2:]) # scale factor
  262. if sf != 1:
  263. ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
  264. imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
  265. # Forward
  266. with amp.autocast(enabled=cuda):
  267. pred = model(imgs) # forward
  268. loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
  269. if rank != -1:
  270. loss *= opt.world_size # gradient averaged between devices in DDP mode
  271. if opt.quad:
  272. loss *= 4.
  273. # Backward
  274. scaler.scale(loss).backward()
  275. # Optimize
  276. if ni % accumulate == 0:
  277. scaler.step(optimizer) # optimizer.step
  278. scaler.update()
  279. optimizer.zero_grad()
  280. if ema:
  281. ema.update(model)
  282. # Print
  283. if rank in [-1, 0]:
  284. mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
  285. mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
  286. s = ('%10s' * 2 + '%10.4g' * 6) % (
  287. '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
  288. pbar.set_description(s)
  289. # Plot
  290. if plots and ni < 3:
  291. f = save_dir / f'train_batch{ni}.jpg' # filename
  292. Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
  293. # if tb_writer:
  294. # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
  295. # tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph
  296. elif plots and ni == 10 and wandb_logger.wandb:
  297. wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
  298. save_dir.glob('train*.jpg') if x.exists()]})
  299. # end batch ------------------------------------------------------------------------------------------------
  300. # end epoch ----------------------------------------------------------------------------------------------------
  301. # Scheduler
  302. lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
  303. scheduler.step()
  304. # DDP process 0 or single-GPU
  305. if rank in [-1, 0]:
  306. # mAP
  307. ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
  308. final_epoch = epoch + 1 == epochs
  309. if not opt.notest or final_epoch: # Calculate mAP
  310. wandb_logger.current_epoch = epoch + 1
  311. results, maps, times = test.test(data_dict,
  312. batch_size=batch_size * 2,
  313. imgsz=imgsz_test,
  314. model=ema.ema,
  315. single_cls=opt.single_cls,
  316. dataloader=testloader,
  317. save_dir=save_dir,
  318. verbose=nc < 50 and final_epoch,
  319. plots=plots and final_epoch,
  320. wandb_logger=wandb_logger,
  321. compute_loss=compute_loss,
  322. is_coco=is_coco)
  323. # Write
  324. with open(results_file, 'a') as f:
  325. f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
  326. if len(opt.name) and opt.bucket:
  327. os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
  328. # Log
  329. tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
  330. 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
  331. 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
  332. 'x/lr0', 'x/lr1', 'x/lr2'] # params
  333. for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
  334. if tb_writer:
  335. tb_writer.add_scalar(tag, x, epoch) # tensorboard
  336. if wandb_logger.wandb:
  337. wandb_logger.log({tag: x}) # W&B
  338. # Update best mAP
  339. fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
  340. if fi > best_fitness:
  341. best_fitness = fi
  342. wandb_logger.end_epoch(best_result=best_fitness == fi)
  343. # Save model
  344. if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
  345. ckpt = {'epoch': epoch,
  346. 'best_fitness': best_fitness,
  347. 'training_results': results_file.read_text(),
  348. 'model': deepcopy(model.module if is_parallel(model) else model).half(),
  349. 'ema': deepcopy(ema.ema).half(),
  350. 'updates': ema.updates,
  351. 'optimizer': optimizer.state_dict(),
  352. 'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
  353. # Save last, best and delete
  354. torch.save(ckpt, last)
  355. if best_fitness == fi:
  356. torch.save(ckpt, best)
  357. if wandb_logger.wandb:
  358. if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
  359. wandb_logger.log_model(
  360. last.parent, opt, epoch, fi, best_model=best_fitness == fi)
  361. del ckpt
  362. # end epoch ----------------------------------------------------------------------------------------------------
  363. # end training
  364. if rank in [-1, 0]:
  365. # Plots
  366. if plots:
  367. plot_results(save_dir=save_dir) # save as results.png
  368. if wandb_logger.wandb:
  369. files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
  370. wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
  371. if (save_dir / f).exists()]})
  372. # Test best.pt
  373. logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
  374. if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
  375. for m in (last, best) if best.exists() else (last): # speed, mAP tests
  376. results, _, _ = test.test(opt.data,
  377. batch_size=batch_size * 2,
  378. imgsz=imgsz_test,
  379. conf_thres=0.001,
  380. iou_thres=0.7,
  381. model=attempt_load(m, device).half(),
  382. single_cls=opt.single_cls,
  383. dataloader=testloader,
  384. save_dir=save_dir,
  385. save_json=True,
  386. plots=False,
  387. is_coco=is_coco)
  388. # Strip optimizers
  389. final = best if best.exists() else last # final model
  390. for f in last, best:
  391. if f.exists():
  392. strip_optimizer(f) # strip optimizers
  393. if opt.bucket:
  394. os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
  395. if wandb_logger.wandb and not opt.evolve: # Log the stripped model
  396. wandb_logger.wandb.log_artifact(str(final), type='model',
  397. name='run_' + wandb_logger.wandb_run.id + '_model',
  398. aliases=['last', 'best', 'stripped'])
  399. wandb_logger.finish_run()
  400. else:
  401. dist.destroy_process_group()
  402. torch.cuda.empty_cache()
  403. return results
  404. if __name__ == '__main__':
  405. parser = argparse.ArgumentParser()
  406. parser.add_argument('--weights', type=str, help='initial weights path')#default='yolov5s.pt',
  407. parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
  408. parser.add_argument('--data', type=str, default='data/voc.yaml', help='data.yaml path')
  409. parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
  410. parser.add_argument('--epochs', type=int, default=50)
  411. parser.add_argument('--batch-size', type=int, default=8, help='total batch size for all GPUs')
  412. parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
  413. parser.add_argument('--rect', action='store_true', help='rectangular training')
  414. parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
  415. parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
  416. parser.add_argument('--notest', action='store_true', help='only test final epoch')
  417. parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
  418. parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
  419. parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
  420. parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
  421. parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
  422. parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  423. parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
  424. parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
  425. parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
  426. parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
  427. parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
  428. parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
  429. parser.add_argument('--project', default='runs/train', help='save to project/name')
  430. parser.add_argument('--entity', default=None, help='W&B entity')
  431. parser.add_argument('--name', default='exp', help='save to project/name')
  432. parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  433. parser.add_argument('--quad', action='store_true', help='quad dataloader')
  434. parser.add_argument('--linear-lr', action='store_true', help='linear LR')
  435. parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
  436. parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
  437. parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
  438. parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
  439. parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
  440. opt = parser.parse_args()
  441. # Set DDP variables
  442. opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
  443. opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
  444. set_logging(opt.global_rank)
  445. if opt.global_rank in [-1, 0]:
  446. check_git_status()
  447. check_requirements()
  448. # Resume
  449. wandb_run = check_wandb_resume(opt)
  450. if opt.resume and not wandb_run: # resume an interrupted run
  451. ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
  452. assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
  453. apriori = opt.global_rank, opt.local_rank
  454. with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
  455. opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
  456. opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate
  457. logger.info('Resuming training from %s' % ckpt)
  458. else:
  459. # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
  460. opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
  461. assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
  462. opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
  463. opt.name = 'evolve' if opt.evolve else opt.name
  464. opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
  465. # DDP mode
  466. opt.total_batch_size = opt.batch_size
  467. device = select_device(opt.device, batch_size=opt.batch_size)
  468. if opt.local_rank != -1:
  469. assert torch.cuda.device_count() > opt.local_rank
  470. torch.cuda.set_device(opt.local_rank)
  471. device = torch.device('cuda', opt.local_rank)
  472. dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
  473. assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
  474. opt.batch_size = opt.total_batch_size // opt.world_size
  475. # Hyperparameters
  476. with open(opt.hyp) as f:
  477. hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
  478. # Train
  479. logger.info(opt)
  480. if not opt.evolve:
  481. tb_writer = None # init loggers
  482. if opt.global_rank in [-1, 0]:
  483. prefix = colorstr('tensorboard: ')
  484. logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
  485. tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
  486. train(hyp, opt, device, tb_writer)
  487. # Evolve hyperparameters (optional)
  488. else:
  489. # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
  490. meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
  491. 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
  492. 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
  493. 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
  494. 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
  495. 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
  496. 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
  497. 'box': (1, 0.02, 0.2), # box loss gain
  498. 'cls': (1, 0.2, 4.0), # cls loss gain
  499. 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
  500. 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
  501. 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
  502. 'iou_t': (0, 0.1, 0.7), # IoU training threshold
  503. 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
  504. 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
  505. 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
  506. 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
  507. 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
  508. 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
  509. 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
  510. 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
  511. 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
  512. 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
  513. 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
  514. 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
  515. 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
  516. 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
  517. 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
  518. assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
  519. opt.notest, opt.nosave = True, True # only test/save final epoch
  520. # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
  521. yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
  522. if opt.bucket:
  523. os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
  524. for _ in range(300): # generations to evolve
  525. if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
  526. # Select parent(s)
  527. parent = 'single' # parent selection method: 'single' or 'weighted'
  528. x = np.loadtxt('evolve.txt', ndmin=2)
  529. n = min(5, len(x)) # number of previous results to consider
  530. x = x[np.argsort(-fitness(x))][:n] # top n mutations
  531. w = fitness(x) - fitness(x).min() # weights
  532. if parent == 'single' or len(x) == 1:
  533. # x = x[random.randint(0, n - 1)] # random selection
  534. x = x[random.choices(range(n), weights=w)[0]] # weighted selection
  535. elif parent == 'weighted':
  536. x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
  537. # Mutate
  538. mp, s = 0.8, 0.2 # mutation probability, sigma
  539. npr = np.random
  540. npr.seed(int(time.time()))
  541. g = np.array([x[0] for x in meta.values()]) # gains 0-1
  542. ng = len(meta)
  543. v = np.ones(ng)
  544. while all(v == 1): # mutate until a change occurs (prevent duplicates)
  545. v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
  546. for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
  547. hyp[k] = float(x[i + 7] * v[i]) # mutate
  548. # Constrain to limits
  549. for k, v in meta.items():
  550. hyp[k] = max(hyp[k], v[1]) # lower limit
  551. hyp[k] = min(hyp[k], v[2]) # upper limit
  552. hyp[k] = round(hyp[k], 5) # significant digits
  553. # Train mutation
  554. results = train(hyp.copy(), opt, device)
  555. # Write mutation results
  556. print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
  557. # Plot results
  558. plot_evolution(yaml_file)
  559. print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
  560. f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')