| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192 |
- # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
- # pyre-unsafe
- import logging
- import numpy as np
- import torch
- from sam3.perflib.masks_ops import mask_iou
- try:
- from torch_generic_nms import generic_nms as generic_nms_cuda
- GENERIC_NMS_AVAILABLE = True
- except ImportError:
- logging.debug(
- "Falling back to triton or CPU mask NMS implementation -- please install `torch_generic_nms` via\n\t"
- 'pip uninstall -y torch_generic_nms; TORCH_CUDA_ARCH_LIST="8.0 9.0" pip install git+https://github.com/ronghanghu/torch_generic_nms'
- )
- GENERIC_NMS_AVAILABLE = False
- def nms_masks(
- pred_probs: torch.Tensor,
- pred_masks: torch.Tensor,
- prob_threshold: float,
- iou_threshold: float,
- ) -> torch.Tensor:
- """
- Args:
- - pred_probs: (num_det,) float Tensor, containing the score (probability) of each detection
- - pred_masks: (num_det, H_mask, W_mask) float Tensor, containing the binary segmentation mask of each detection
- - prob_threshold: float, score threshold to prefilter detections (NMS is performed on detections above threshold)
- - iou_threshold: float, mask IoU threshold for NMS
- Returns:
- - keep: (num_det,) bool Tensor, indicating whether each detection is kept after score thresholding + NMS
- """
- # prefilter the detections with prob_threshold ("valid" are those above prob_threshold)
- is_valid = pred_probs > prob_threshold # (num_det,)
- probs = pred_probs[is_valid] # (num_valid,)
- masks_binary = pred_masks[is_valid] > 0 # (num_valid, H_mask, W_mask)
- if probs.numel() == 0:
- return is_valid # no valid detection, return empty keep mask
- ious = mask_iou(masks_binary, masks_binary) # (num_valid, num_valid)
- kept_inds = generic_nms(ious, probs, iou_threshold)
- # valid_inds are the indices among `probs` of valid detections before NMS (or -1 for invalid)
- valid_inds = torch.where(is_valid, is_valid.cumsum(dim=0) - 1, -1) # (num_det,)
- keep = torch.isin(valid_inds, kept_inds) # (num_det,)
- return keep
- def generic_nms(
- ious: torch.Tensor, scores: torch.Tensor, iou_threshold=0.5
- ) -> torch.Tensor:
- """A generic version of `torchvision.ops.nms` that takes a pairwise IoU matrix."""
- assert ious.dim() == 2 and ious.size(0) == ious.size(1)
- assert scores.dim() == 1 and scores.size(0) == ious.size(0)
- if ious.is_cuda:
- if GENERIC_NMS_AVAILABLE:
- return generic_nms_cuda(ious, scores, iou_threshold, use_iou_matrix=True)
- else:
- from sam3.perflib.triton.nms import nms_triton
- return nms_triton(ious, scores, iou_threshold)
- return generic_nms_cpu(ious, scores, iou_threshold)
- def generic_nms_cpu(
- ious: torch.Tensor, scores: torch.Tensor, iou_threshold=0.5
- ) -> torch.Tensor:
- """
- A generic version of `torchvision.ops.nms` that takes a pairwise IoU matrix. (CPU implementation
- based on https://github.com/jwyang/faster-rcnn.pytorch/blob/master/lib/model/nms/nms_cpu.py)
- """
- ious_np = ious.float().detach().cpu().numpy()
- scores_np = scores.float().detach().cpu().numpy()
- order = scores_np.argsort()[::-1]
- kept_inds = []
- while order.size > 0:
- i = order.item(0)
- kept_inds.append(i)
- inds = np.where(ious_np[i, order[1:]] <= iou_threshold)[0]
- order = order[inds + 1]
- return torch.tensor(kept_inds, dtype=torch.int64, device=scores.device)
|