| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 |
- # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
- # pyre-unsafe
- import torch
- def masks_to_boxes(masks: torch.Tensor, obj_ids: list[int]):
- with torch.autograd.profiler.record_function("perflib: masks_to_boxes"):
- # Sanity check based on callsite for replacement
- assert masks.shape[0] == len(obj_ids)
- assert masks.dim() == 3
- # Based on torchvision masks_to_boxes
- if masks.numel() == 0:
- return torch.zeros((0, 4), device=masks.device, dtype=torch.float)
- N, H, W = masks.shape
- device = masks.device
- y = torch.arange(H, device=device).view(1, H)
- x = torch.arange(W, device=device).view(1, W)
- masks_with_obj = masks != 0 # N, H, W
- masks_with_obj_x = masks_with_obj.amax(
- dim=1
- ) # N, H (which columns have objects)
- masks_with_obj_y = masks_with_obj.amax(dim=2) # N, W (which rows have objects)
- masks_without_obj_x = ~masks_with_obj_x
- masks_without_obj_y = ~masks_with_obj_y
- bounding_boxes_0 = torch.amin(
- (masks_without_obj_x * W) + (masks_with_obj_x * x), dim=1
- )
- bounding_boxes_1 = torch.amin(
- (masks_without_obj_y * H) + (masks_with_obj_y * y), dim=1
- )
- bounding_boxes_2 = torch.amax(masks_with_obj_x * x, dim=1)
- bounding_boxes_3 = torch.amax(masks_with_obj_y * y, dim=1)
- bounding_boxes = torch.stack(
- [bounding_boxes_0, bounding_boxes_1, bounding_boxes_2, bounding_boxes_3],
- dim=1,
- ).to(dtype=torch.float)
- assert bounding_boxes.shape == (N, 4)
- assert bounding_boxes.device == masks.device
- assert bounding_boxes.dtype == torch.float
- return bounding_boxes
- def mask_iou(pred_masks: torch.Tensor, gt_masks: torch.Tensor) -> torch.Tensor:
- """
- Compute the IoU (Intersection over Union) between predicted masks and ground truth masks.
- Args:
- - pred_masks: (N, H, W) bool Tensor, containing binary predicted segmentation masks
- - gt_masks: (M, H, W) bool Tensor, containing binary ground truth segmentation masks
- Returns:
- - ious: (N, M) float Tensor, containing IoUs for each pair of predicted and ground truth masks
- """
- assert pred_masks.dtype == gt_masks.dtype == torch.bool
- N, H, W = pred_masks.shape
- M, _, _ = gt_masks.shape
- # Flatten masks: (N, 1, H*W) and (1, M, H*W)
- pred_flat = pred_masks.view(N, 1, H * W)
- gt_flat = gt_masks.view(1, M, H * W)
- # Compute intersection and union: (N, M)
- intersection = (pred_flat & gt_flat).sum(dim=2).float()
- union = (pred_flat | gt_flat).sum(dim=2).float()
- ious = intersection / union.clamp(min=1)
- return ious # shape: (N, M)
|