| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # All rights reserved.
- # This source code is licensed under the license found in the
- # LICENSE file in the root directory of this source tree.
- import math
- import warnings
- from functools import partial
- from typing import Tuple, Type
- import torch
- import torch.nn.functional as F
- from torch import nn, Tensor
- from sam2.modeling.position_encoding import apply_rotary_enc, compute_axial_cis
- from sam2.modeling.sam2_utils import MLP
- from sam2.utils.misc import get_sdpa_settings
- warnings.simplefilter(action="ignore", category=FutureWarning)
- OLD_GPU, USE_FLASH_ATTN, MATH_KERNEL_ON = get_sdpa_settings()
- class TwoWayTransformer(nn.Module):
- def __init__(
- self,
- depth: int,
- embedding_dim: int,
- num_heads: int,
- mlp_dim: int,
- activation: Type[nn.Module] = nn.ReLU,
- attention_downsample_rate: int = 2,
- ) -> None:
- """
- A transformer decoder that attends to an input image using
- queries whose positional embedding is supplied.
- Args:
- depth (int): number of layers in the transformer
- embedding_dim (int): the channel dimension for the input embeddings
- num_heads (int): the number of heads for multihead attention. Must
- divide embedding_dim
- mlp_dim (int): the channel dimension internal to the MLP block
- activation (nn.Module): the activation to use in the MLP block
- """
- super().__init__()
- self.depth = depth
- self.embedding_dim = embedding_dim
- self.num_heads = num_heads
- self.mlp_dim = mlp_dim
- self.layers = nn.ModuleList()
- for i in range(depth):
- self.layers.append(
- TwoWayAttentionBlock(
- embedding_dim=embedding_dim,
- num_heads=num_heads,
- mlp_dim=mlp_dim,
- activation=activation,
- attention_downsample_rate=attention_downsample_rate,
- skip_first_layer_pe=(i == 0),
- )
- )
- self.final_attn_token_to_image = Attention(
- embedding_dim, num_heads, downsample_rate=attention_downsample_rate
- )
- self.norm_final_attn = nn.LayerNorm(embedding_dim)
- def forward(
- self,
- image_embedding: Tensor,
- image_pe: Tensor,
- point_embedding: Tensor,
- ) -> Tuple[Tensor, Tensor]:
- """
- Args:
- image_embedding (torch.Tensor): image to attend to. Should be shape
- B x embedding_dim x h x w for any h and w.
- image_pe (torch.Tensor): the positional encoding to add to the image. Must
- have the same shape as image_embedding.
- point_embedding (torch.Tensor): the embedding to add to the query points.
- Must have shape B x N_points x embedding_dim for any N_points.
- Returns:
- torch.Tensor: the processed point_embedding
- torch.Tensor: the processed image_embedding
- """
- # BxCxHxW -> BxHWxC == B x N_image_tokens x C
- bs, c, h, w = image_embedding.shape
- image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
- image_pe = image_pe.flatten(2).permute(0, 2, 1)
- # Prepare queries
- queries = point_embedding
- keys = image_embedding
- # Apply transformer blocks and final layernorm
- for layer in self.layers:
- queries, keys = layer(
- queries=queries,
- keys=keys,
- query_pe=point_embedding,
- key_pe=image_pe,
- )
- # Apply the final attention layer from the points to the image
- q = queries + point_embedding
- k = keys + image_pe
- attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
- queries = queries + attn_out
- queries = self.norm_final_attn(queries)
- return queries, keys
- class TwoWayAttentionBlock(nn.Module):
- def __init__(
- self,
- embedding_dim: int,
- num_heads: int,
- mlp_dim: int = 2048,
- activation: Type[nn.Module] = nn.ReLU,
- attention_downsample_rate: int = 2,
- skip_first_layer_pe: bool = False,
- ) -> None:
- """
- A transformer block with four layers: (1) self-attention of sparse
- inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
- block on sparse inputs, and (4) cross attention of dense inputs to sparse
- inputs.
- Arguments:
- embedding_dim (int): the channel dimension of the embeddings
- num_heads (int): the number of heads in the attention layers
- mlp_dim (int): the hidden dimension of the mlp block
- activation (nn.Module): the activation of the mlp block
- skip_first_layer_pe (bool): skip the PE on the first layer
- """
- super().__init__()
- self.self_attn = Attention(embedding_dim, num_heads)
- self.norm1 = nn.LayerNorm(embedding_dim)
- self.cross_attn_token_to_image = Attention(
- embedding_dim, num_heads, downsample_rate=attention_downsample_rate
- )
- self.norm2 = nn.LayerNorm(embedding_dim)
- self.mlp = MLP(
- embedding_dim, mlp_dim, embedding_dim, num_layers=2, activation=activation
- )
- self.norm3 = nn.LayerNorm(embedding_dim)
- self.norm4 = nn.LayerNorm(embedding_dim)
- self.cross_attn_image_to_token = Attention(
- embedding_dim, num_heads, downsample_rate=attention_downsample_rate
- )
- self.skip_first_layer_pe = skip_first_layer_pe
- def forward(
- self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
- ) -> Tuple[Tensor, Tensor]:
- # Self attention block
- if self.skip_first_layer_pe:
- queries = self.self_attn(q=queries, k=queries, v=queries)
- else:
- q = queries + query_pe
- attn_out = self.self_attn(q=q, k=q, v=queries)
- queries = queries + attn_out
- queries = self.norm1(queries)
- # Cross attention block, tokens attending to image embedding
- q = queries + query_pe
- k = keys + key_pe
- attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
- queries = queries + attn_out
- queries = self.norm2(queries)
- # MLP block
- mlp_out = self.mlp(queries)
- queries = queries + mlp_out
- queries = self.norm3(queries)
- # Cross attention block, image embedding attending to tokens
- q = queries + query_pe
- k = keys + key_pe
- attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
- keys = keys + attn_out
- keys = self.norm4(keys)
- return queries, keys
- class Attention(nn.Module):
- """
- An attention layer that allows for downscaling the size of the embedding
- after projection to queries, keys, and values.
- """
- def __init__(
- self,
- embedding_dim: int,
- num_heads: int,
- downsample_rate: int = 1,
- dropout: float = 0.0,
- kv_in_dim: int = None,
- ) -> None:
- super().__init__()
- self.embedding_dim = embedding_dim
- self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
- self.internal_dim = embedding_dim // downsample_rate
- self.num_heads = num_heads
- assert (
- self.internal_dim % num_heads == 0
- ), "num_heads must divide embedding_dim."
- self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
- self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
- self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
- self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
- self.dropout_p = dropout
- def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
- b, n, c = x.shape
- x = x.reshape(b, n, num_heads, c // num_heads)
- return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
- def _recombine_heads(self, x: Tensor) -> Tensor:
- b, n_heads, n_tokens, c_per_head = x.shape
- x = x.transpose(1, 2)
- return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
- def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
- # Input projections
- q = self.q_proj(q)
- k = self.k_proj(k)
- v = self.v_proj(v)
- # Separate into heads
- q = self._separate_heads(q, self.num_heads)
- k = self._separate_heads(k, self.num_heads)
- v = self._separate_heads(v, self.num_heads)
- dropout_p = self.dropout_p if self.training else 0.0
- # Attention
- with torch.backends.cuda.sdp_kernel(
- enable_flash=USE_FLASH_ATTN,
- # if Flash attention kernel is off, then math kernel needs to be enabled
- enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON,
- enable_mem_efficient=OLD_GPU,
- ):
- out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
- out = self._recombine_heads(out)
- out = self.out_proj(out)
- return out
- class RoPEAttention(Attention):
- """Attention with rotary position encoding."""
- def __init__(
- self,
- *args,
- rope_theta=10000.0,
- # whether to repeat q rope to match k length
- # this is needed for cross-attention to memories
- rope_k_repeat=False,
- feat_sizes=(32, 32), # [w, h] for stride 16 feats at 512 resolution
- **kwargs,
- ):
- super().__init__(*args, **kwargs)
- self.compute_cis = partial(
- compute_axial_cis, dim=self.internal_dim // self.num_heads, theta=rope_theta
- )
- freqs_cis = self.compute_cis(end_x=feat_sizes[0], end_y=feat_sizes[1])
- self.freqs_cis = freqs_cis
- self.rope_k_repeat = rope_k_repeat
- def forward(
- self, q: Tensor, k: Tensor, v: Tensor, num_k_exclude_rope: int = 0
- ) -> Tensor:
- # Input projections
- q = self.q_proj(q)
- k = self.k_proj(k)
- v = self.v_proj(v)
- # Separate into heads
- q = self._separate_heads(q, self.num_heads)
- k = self._separate_heads(k, self.num_heads)
- v = self._separate_heads(v, self.num_heads)
- # Apply rotary position encoding
- w = h = math.sqrt(q.shape[-2])
- self.freqs_cis = self.freqs_cis.to(q.device)
- if self.freqs_cis.shape[0] != q.shape[-2]:
- self.freqs_cis = self.compute_cis(end_x=w, end_y=h).to(q.device)
- if q.shape[-2] != k.shape[-2]:
- assert self.rope_k_repeat
- num_k_rope = k.size(-2) - num_k_exclude_rope
- q, k[:, :, :num_k_rope] = apply_rotary_enc(
- q,
- k[:, :, :num_k_rope],
- freqs_cis=self.freqs_cis,
- repeat_freqs_k=self.rope_k_repeat,
- )
- dropout_p = self.dropout_p if self.training else 0.0
- # Attention
- with torch.backends.cuda.sdp_kernel(
- enable_flash=USE_FLASH_ATTN,
- # if Flash attention kernel is off, then math kernel needs to be enabled
- enable_math=(OLD_GPU and dropout_p > 0.0) or MATH_KERNEL_ON,
- enable_mem_efficient=OLD_GPU,
- ):
- out = F.scaled_dot_product_attention(q, k, v, dropout_p=dropout_p)
- out = self._recombine_heads(out)
- out = self.out_proj(out)
- return out
|