| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # All rights reserved.
- # This source code is licensed under the license found in the
- # LICENSE file in the root directory of this source tree.
- import logging
- import numpy as np
- import torch
- import torch.distributed
- from sam2.modeling.sam2_base import SAM2Base
- from sam2.modeling.sam2_utils import (
- get_1d_sine_pe,
- get_next_point,
- sample_box_points,
- select_closest_cond_frames,
- )
- from sam2.utils.misc import concat_points
- from training.utils.data_utils import BatchedVideoDatapoint
- class SAM2Train(SAM2Base):
- def __init__(
- self,
- image_encoder,
- memory_attention=None,
- memory_encoder=None,
- prob_to_use_pt_input_for_train=0.0,
- prob_to_use_pt_input_for_eval=0.0,
- prob_to_use_box_input_for_train=0.0,
- prob_to_use_box_input_for_eval=0.0,
- # if it is greater than 1, we interactive point sampling in the 1st frame and other randomly selected frames
- num_frames_to_correct_for_train=1, # default: only iteratively sample on first frame
- num_frames_to_correct_for_eval=1, # default: only iteratively sample on first frame
- rand_frames_to_correct_for_train=False,
- rand_frames_to_correct_for_eval=False,
- # how many frames to use as initial conditioning frames (for both point input and mask input; the first frame is always used as an initial conditioning frame)
- # - if `rand_init_cond_frames` below is True, we randomly sample 1~num_init_cond_frames initial conditioning frames
- # - otherwise we sample a fixed number of num_init_cond_frames initial conditioning frames
- # note: for point input, we sample correction points on all such initial conditioning frames, and we require that `num_frames_to_correct` >= `num_init_cond_frames`;
- # these are initial conditioning frames because as we track the video, more conditioning frames might be added
- # when a frame receives correction clicks under point input if `add_all_frames_to_correct_as_cond=True`
- num_init_cond_frames_for_train=1, # default: only use the first frame as initial conditioning frame
- num_init_cond_frames_for_eval=1, # default: only use the first frame as initial conditioning frame
- rand_init_cond_frames_for_train=True, # default: random 1~num_init_cond_frames_for_train cond frames (to be constent w/ previous TA data loader)
- rand_init_cond_frames_for_eval=False,
- # if `add_all_frames_to_correct_as_cond` is True, we also append to the conditioning frame list any frame that receives a later correction click
- # if `add_all_frames_to_correct_as_cond` is False, we conditioning frame list to only use those initial conditioning frames
- add_all_frames_to_correct_as_cond=False,
- # how many additional correction points to sample (on each frame selected to be corrected)
- # note that the first frame receives an initial input click (in addition to any correction clicks)
- num_correction_pt_per_frame=7,
- # method for point sampling during evaluation
- # "uniform" (sample uniformly from error region) or "center" (use the point with the largest distance to error region boundary)
- # default to "center" to be consistent with evaluation in the SAM paper
- pt_sampling_for_eval="center",
- # During training, we optionally allow sampling the correction points from GT regions
- # instead of the prediction error regions with a small probability. This might allow the
- # model to overfit less to the error regions in training datasets
- prob_to_sample_from_gt_for_train=0.0,
- use_act_ckpt_iterative_pt_sampling=False,
- # whether to forward image features per frame (as it's being tracked) during evaluation, instead of forwarding image features
- # of all frames at once. This avoids backbone OOM errors on very long videos in evaluation, but could be slightly slower.
- forward_backbone_per_frame_for_eval=False,
- freeze_image_encoder=False,
- **kwargs,
- ):
- super().__init__(image_encoder, memory_attention, memory_encoder, **kwargs)
- self.use_act_ckpt_iterative_pt_sampling = use_act_ckpt_iterative_pt_sampling
- self.forward_backbone_per_frame_for_eval = forward_backbone_per_frame_for_eval
- # Point sampler and conditioning frames
- self.prob_to_use_pt_input_for_train = prob_to_use_pt_input_for_train
- self.prob_to_use_box_input_for_train = prob_to_use_box_input_for_train
- self.prob_to_use_pt_input_for_eval = prob_to_use_pt_input_for_eval
- self.prob_to_use_box_input_for_eval = prob_to_use_box_input_for_eval
- if prob_to_use_pt_input_for_train > 0 or prob_to_use_pt_input_for_eval > 0:
- logging.info(
- f"Training with points (sampled from masks) as inputs with p={prob_to_use_pt_input_for_train}"
- )
- assert num_frames_to_correct_for_train >= num_init_cond_frames_for_train
- assert num_frames_to_correct_for_eval >= num_init_cond_frames_for_eval
- self.num_frames_to_correct_for_train = num_frames_to_correct_for_train
- self.num_frames_to_correct_for_eval = num_frames_to_correct_for_eval
- self.rand_frames_to_correct_for_train = rand_frames_to_correct_for_train
- self.rand_frames_to_correct_for_eval = rand_frames_to_correct_for_eval
- # Initial multi-conditioning frames
- self.num_init_cond_frames_for_train = num_init_cond_frames_for_train
- self.num_init_cond_frames_for_eval = num_init_cond_frames_for_eval
- self.rand_init_cond_frames_for_train = rand_init_cond_frames_for_train
- self.rand_init_cond_frames_for_eval = rand_init_cond_frames_for_eval
- self.add_all_frames_to_correct_as_cond = add_all_frames_to_correct_as_cond
- self.num_correction_pt_per_frame = num_correction_pt_per_frame
- self.pt_sampling_for_eval = pt_sampling_for_eval
- self.prob_to_sample_from_gt_for_train = prob_to_sample_from_gt_for_train
- # A random number generator with a fixed initial seed across GPUs
- self.rng = np.random.default_rng(seed=42)
- if freeze_image_encoder:
- for p in self.image_encoder.parameters():
- p.requires_grad = False
- def forward(self, input: BatchedVideoDatapoint):
- if self.training or not self.forward_backbone_per_frame_for_eval:
- # precompute image features on all frames before tracking
- backbone_out = self.forward_image(input.flat_img_batch)
- else:
- # defer image feature computation on a frame until it's being tracked
- backbone_out = {"backbone_fpn": None, "vision_pos_enc": None}
- backbone_out = self.prepare_prompt_inputs(backbone_out, input)
- previous_stages_out = self.forward_tracking(backbone_out, input)
- return previous_stages_out
- def _prepare_backbone_features_per_frame(self, img_batch, img_ids):
- """Compute the image backbone features on the fly for the given img_ids."""
- # Only forward backbone on unique image ids to avoid repetitive computation
- # (if `img_ids` has only one element, it's already unique so we skip this step).
- if img_ids.numel() > 1:
- unique_img_ids, inv_ids = torch.unique(img_ids, return_inverse=True)
- else:
- unique_img_ids, inv_ids = img_ids, None
- # Compute the image features on those unique image ids
- image = img_batch[unique_img_ids]
- backbone_out = self.forward_image(image)
- (
- _,
- vision_feats,
- vision_pos_embeds,
- feat_sizes,
- ) = self._prepare_backbone_features(backbone_out)
- # Inverse-map image features for `unique_img_ids` to the final image features
- # for the original input `img_ids`.
- if inv_ids is not None:
- image = image[inv_ids]
- vision_feats = [x[:, inv_ids] for x in vision_feats]
- vision_pos_embeds = [x[:, inv_ids] for x in vision_pos_embeds]
- return image, vision_feats, vision_pos_embeds, feat_sizes
- def prepare_prompt_inputs(self, backbone_out, input, start_frame_idx=0):
- """
- Prepare input mask, point or box prompts. Optionally, we allow tracking from
- a custom `start_frame_idx` to the end of the video (for evaluation purposes).
- """
- # Load the ground-truth masks on all frames (so that we can later
- # sample correction points from them)
- # gt_masks_per_frame = {
- # stage_id: targets.segments.unsqueeze(1) # [B, 1, H_im, W_im]
- # for stage_id, targets in enumerate(input.find_targets)
- # }
- gt_masks_per_frame = {
- stage_id: masks.unsqueeze(1) # [B, 1, H_im, W_im]
- for stage_id, masks in enumerate(input.masks)
- }
- # gt_masks_per_frame = input.masks.unsqueeze(2) # [T,B,1,H_im,W_im] keep everything in tensor form
- backbone_out["gt_masks_per_frame"] = gt_masks_per_frame
- num_frames = input.num_frames
- backbone_out["num_frames"] = num_frames
- # Randomly decide whether to use point inputs or mask inputs
- if self.training:
- prob_to_use_pt_input = self.prob_to_use_pt_input_for_train
- prob_to_use_box_input = self.prob_to_use_box_input_for_train
- num_frames_to_correct = self.num_frames_to_correct_for_train
- rand_frames_to_correct = self.rand_frames_to_correct_for_train
- num_init_cond_frames = self.num_init_cond_frames_for_train
- rand_init_cond_frames = self.rand_init_cond_frames_for_train
- else:
- prob_to_use_pt_input = self.prob_to_use_pt_input_for_eval
- prob_to_use_box_input = self.prob_to_use_box_input_for_eval
- num_frames_to_correct = self.num_frames_to_correct_for_eval
- rand_frames_to_correct = self.rand_frames_to_correct_for_eval
- num_init_cond_frames = self.num_init_cond_frames_for_eval
- rand_init_cond_frames = self.rand_init_cond_frames_for_eval
- if num_frames == 1:
- # here we handle a special case for mixing video + SAM on image training,
- # where we force using point input for the SAM task on static images
- prob_to_use_pt_input = 1.0
- num_frames_to_correct = 1
- num_init_cond_frames = 1
- assert num_init_cond_frames >= 1
- # (here `self.rng.random()` returns value in range 0.0 <= X < 1.0)
- use_pt_input = self.rng.random() < prob_to_use_pt_input
- if rand_init_cond_frames and num_init_cond_frames > 1:
- # randomly select 1 to `num_init_cond_frames` frames as initial conditioning frames
- num_init_cond_frames = self.rng.integers(
- 1, num_init_cond_frames, endpoint=True
- )
- if (
- use_pt_input
- and rand_frames_to_correct
- and num_frames_to_correct > num_init_cond_frames
- ):
- # randomly select `num_init_cond_frames` to `num_frames_to_correct` frames to sample
- # correction clicks (only for the case of point input)
- num_frames_to_correct = self.rng.integers(
- num_init_cond_frames, num_frames_to_correct, endpoint=True
- )
- backbone_out["use_pt_input"] = use_pt_input
- # Sample initial conditioning frames
- if num_init_cond_frames == 1:
- init_cond_frames = [start_frame_idx] # starting frame
- else:
- # starting frame + randomly selected remaining frames (without replacement)
- init_cond_frames = [start_frame_idx] + self.rng.choice(
- range(start_frame_idx + 1, num_frames),
- num_init_cond_frames - 1,
- replace=False,
- ).tolist()
- backbone_out["init_cond_frames"] = init_cond_frames
- backbone_out["frames_not_in_init_cond"] = [
- t for t in range(start_frame_idx, num_frames) if t not in init_cond_frames
- ]
- # Prepare mask or point inputs on initial conditioning frames
- backbone_out["mask_inputs_per_frame"] = {} # {frame_idx: <input_masks>}
- backbone_out["point_inputs_per_frame"] = {} # {frame_idx: <input_points>}
- for t in init_cond_frames:
- if not use_pt_input:
- backbone_out["mask_inputs_per_frame"][t] = gt_masks_per_frame[t]
- else:
- # During training # P(box) = prob_to_use_pt_input * prob_to_use_box_input
- use_box_input = self.rng.random() < prob_to_use_box_input
- if use_box_input:
- points, labels = sample_box_points(
- gt_masks_per_frame[t],
- )
- else:
- # (here we only sample **one initial point** on initial conditioning frames from the
- # ground-truth mask; we may sample more correction points on the fly)
- points, labels = get_next_point(
- gt_masks=gt_masks_per_frame[t],
- pred_masks=None,
- method=(
- "uniform" if self.training else self.pt_sampling_for_eval
- ),
- )
- point_inputs = {"point_coords": points, "point_labels": labels}
- backbone_out["point_inputs_per_frame"][t] = point_inputs
- # Sample frames where we will add correction clicks on the fly
- # based on the error between prediction and ground-truth masks
- if not use_pt_input:
- # no correction points will be sampled when using mask inputs
- frames_to_add_correction_pt = []
- elif num_frames_to_correct == num_init_cond_frames:
- frames_to_add_correction_pt = init_cond_frames
- else:
- assert num_frames_to_correct > num_init_cond_frames
- # initial cond frame + randomly selected remaining frames (without replacement)
- extra_num = num_frames_to_correct - num_init_cond_frames
- frames_to_add_correction_pt = (
- init_cond_frames
- + self.rng.choice(
- backbone_out["frames_not_in_init_cond"], extra_num, replace=False
- ).tolist()
- )
- backbone_out["frames_to_add_correction_pt"] = frames_to_add_correction_pt
- return backbone_out
- def forward_tracking(
- self, backbone_out, input: BatchedVideoDatapoint, return_dict=False
- ):
- """Forward video tracking on each frame (and sample correction clicks)."""
- img_feats_already_computed = backbone_out["backbone_fpn"] is not None
- if img_feats_already_computed:
- # Prepare the backbone features
- # - vision_feats and vision_pos_embeds are in (HW)BC format
- (
- _,
- vision_feats,
- vision_pos_embeds,
- feat_sizes,
- ) = self._prepare_backbone_features(backbone_out)
- # Starting the stage loop
- num_frames = backbone_out["num_frames"]
- init_cond_frames = backbone_out["init_cond_frames"]
- frames_to_add_correction_pt = backbone_out["frames_to_add_correction_pt"]
- # first process all the initial conditioning frames to encode them as memory,
- # and then conditioning on them to track the remaining frames
- processing_order = init_cond_frames + backbone_out["frames_not_in_init_cond"]
- output_dict = {
- "cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
- "non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
- }
- for stage_id in processing_order:
- # Get the image features for the current frames
- # img_ids = input.find_inputs[stage_id].img_ids
- img_ids = input.flat_obj_to_img_idx[stage_id]
- if img_feats_already_computed:
- # Retrieve image features according to img_ids (if they are already computed).
- current_vision_feats = [x[:, img_ids] for x in vision_feats]
- current_vision_pos_embeds = [x[:, img_ids] for x in vision_pos_embeds]
- else:
- # Otherwise, compute the image features on the fly for the given img_ids
- # (this might be used for evaluation on long videos to avoid backbone OOM).
- (
- _,
- current_vision_feats,
- current_vision_pos_embeds,
- feat_sizes,
- ) = self._prepare_backbone_features_per_frame(
- input.flat_img_batch, img_ids
- )
- # Get output masks based on this frame's prompts and previous memory
- current_out = self.track_step(
- frame_idx=stage_id,
- is_init_cond_frame=stage_id in init_cond_frames,
- current_vision_feats=current_vision_feats,
- current_vision_pos_embeds=current_vision_pos_embeds,
- feat_sizes=feat_sizes,
- point_inputs=backbone_out["point_inputs_per_frame"].get(stage_id, None),
- mask_inputs=backbone_out["mask_inputs_per_frame"].get(stage_id, None),
- gt_masks=backbone_out["gt_masks_per_frame"].get(stage_id, None),
- frames_to_add_correction_pt=frames_to_add_correction_pt,
- output_dict=output_dict,
- num_frames=num_frames,
- )
- # Append the output, depending on whether it's a conditioning frame
- add_output_as_cond_frame = stage_id in init_cond_frames or (
- self.add_all_frames_to_correct_as_cond
- and stage_id in frames_to_add_correction_pt
- )
- if add_output_as_cond_frame:
- output_dict["cond_frame_outputs"][stage_id] = current_out
- else:
- output_dict["non_cond_frame_outputs"][stage_id] = current_out
- if return_dict:
- return output_dict
- # turn `output_dict` into a list for loss function
- all_frame_outputs = {}
- all_frame_outputs.update(output_dict["cond_frame_outputs"])
- all_frame_outputs.update(output_dict["non_cond_frame_outputs"])
- all_frame_outputs = [all_frame_outputs[t] for t in range(num_frames)]
- # Make DDP happy with activation checkpointing by removing unused keys
- all_frame_outputs = [
- {k: v for k, v in d.items() if k != "obj_ptr"} for d in all_frame_outputs
- ]
- return all_frame_outputs
- def track_step(
- self,
- frame_idx,
- is_init_cond_frame,
- current_vision_feats,
- current_vision_pos_embeds,
- feat_sizes,
- point_inputs,
- mask_inputs,
- output_dict,
- num_frames,
- track_in_reverse=False, # tracking in reverse time order (for demo usage)
- run_mem_encoder=True, # Whether to run the memory encoder on the predicted masks.
- prev_sam_mask_logits=None, # The previously predicted SAM mask logits.
- frames_to_add_correction_pt=None,
- gt_masks=None,
- ):
- if frames_to_add_correction_pt is None:
- frames_to_add_correction_pt = []
- current_out, sam_outputs, high_res_features, pix_feat = self._track_step(
- frame_idx,
- is_init_cond_frame,
- current_vision_feats,
- current_vision_pos_embeds,
- feat_sizes,
- point_inputs,
- mask_inputs,
- output_dict,
- num_frames,
- track_in_reverse,
- prev_sam_mask_logits,
- )
- (
- low_res_multimasks,
- high_res_multimasks,
- ious,
- low_res_masks,
- high_res_masks,
- obj_ptr,
- object_score_logits,
- ) = sam_outputs
- current_out["multistep_pred_masks"] = low_res_masks
- current_out["multistep_pred_masks_high_res"] = high_res_masks
- current_out["multistep_pred_multimasks"] = [low_res_multimasks]
- current_out["multistep_pred_multimasks_high_res"] = [high_res_multimasks]
- current_out["multistep_pred_ious"] = [ious]
- current_out["multistep_point_inputs"] = [point_inputs]
- current_out["multistep_object_score_logits"] = [object_score_logits]
- # Optionally, sample correction points iteratively to correct the mask
- if frame_idx in frames_to_add_correction_pt:
- point_inputs, final_sam_outputs = self._iter_correct_pt_sampling(
- is_init_cond_frame,
- point_inputs,
- gt_masks,
- high_res_features,
- pix_feat,
- low_res_multimasks,
- high_res_multimasks,
- ious,
- low_res_masks,
- high_res_masks,
- object_score_logits,
- current_out,
- )
- (
- _,
- _,
- _,
- low_res_masks,
- high_res_masks,
- obj_ptr,
- object_score_logits,
- ) = final_sam_outputs
- # Use the final prediction (after all correction steps for output and eval)
- current_out["pred_masks"] = low_res_masks
- current_out["pred_masks_high_res"] = high_res_masks
- current_out["obj_ptr"] = obj_ptr
- # Finally run the memory encoder on the predicted mask to encode
- # it into a new memory feature (that can be used in future frames)
- self._encode_memory_in_output(
- current_vision_feats,
- feat_sizes,
- point_inputs,
- run_mem_encoder,
- high_res_masks,
- object_score_logits,
- current_out,
- )
- return current_out
- def _iter_correct_pt_sampling(
- self,
- is_init_cond_frame,
- point_inputs,
- gt_masks,
- high_res_features,
- pix_feat_with_mem,
- low_res_multimasks,
- high_res_multimasks,
- ious,
- low_res_masks,
- high_res_masks,
- object_score_logits,
- current_out,
- ):
- assert gt_masks is not None
- all_pred_masks = [low_res_masks]
- all_pred_high_res_masks = [high_res_masks]
- all_pred_multimasks = [low_res_multimasks]
- all_pred_high_res_multimasks = [high_res_multimasks]
- all_pred_ious = [ious]
- all_point_inputs = [point_inputs]
- all_object_score_logits = [object_score_logits]
- for _ in range(self.num_correction_pt_per_frame):
- # sample a new point from the error between prediction and ground-truth
- # (with a small probability, directly sample from GT masks instead of errors)
- if self.training and self.prob_to_sample_from_gt_for_train > 0:
- sample_from_gt = (
- self.rng.random() < self.prob_to_sample_from_gt_for_train
- )
- else:
- sample_from_gt = False
- # if `pred_for_new_pt` is None, only GT masks will be used for point sampling
- pred_for_new_pt = None if sample_from_gt else (high_res_masks > 0)
- new_points, new_labels = get_next_point(
- gt_masks=gt_masks,
- pred_masks=pred_for_new_pt,
- method="uniform" if self.training else self.pt_sampling_for_eval,
- )
- point_inputs = concat_points(point_inputs, new_points, new_labels)
- # Feed the mask logits of the previous SAM outputs in the next SAM decoder step.
- # For tracking, this means that when the user adds a correction click, we also feed
- # the tracking output mask logits along with the click as input to the SAM decoder.
- mask_inputs = low_res_masks
- multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
- if self.use_act_ckpt_iterative_pt_sampling and not multimask_output:
- sam_outputs = torch.utils.checkpoint.checkpoint(
- self._forward_sam_heads,
- backbone_features=pix_feat_with_mem,
- point_inputs=point_inputs,
- mask_inputs=mask_inputs,
- high_res_features=high_res_features,
- multimask_output=multimask_output,
- use_reentrant=False,
- )
- else:
- sam_outputs = self._forward_sam_heads(
- backbone_features=pix_feat_with_mem,
- point_inputs=point_inputs,
- mask_inputs=mask_inputs,
- high_res_features=high_res_features,
- multimask_output=multimask_output,
- )
- (
- low_res_multimasks,
- high_res_multimasks,
- ious,
- low_res_masks,
- high_res_masks,
- _,
- object_score_logits,
- ) = sam_outputs
- all_pred_masks.append(low_res_masks)
- all_pred_high_res_masks.append(high_res_masks)
- all_pred_multimasks.append(low_res_multimasks)
- all_pred_high_res_multimasks.append(high_res_multimasks)
- all_pred_ious.append(ious)
- all_point_inputs.append(point_inputs)
- all_object_score_logits.append(object_score_logits)
- # Concatenate the masks along channel (to compute losses on all of them,
- # using `MultiStepIteractiveMasks`)
- current_out["multistep_pred_masks"] = torch.cat(all_pred_masks, dim=1)
- current_out["multistep_pred_masks_high_res"] = torch.cat(
- all_pred_high_res_masks, dim=1
- )
- current_out["multistep_pred_multimasks"] = all_pred_multimasks
- current_out["multistep_pred_multimasks_high_res"] = all_pred_high_res_multimasks
- current_out["multistep_pred_ious"] = all_pred_ious
- current_out["multistep_point_inputs"] = all_point_inputs
- current_out["multistep_object_score_logits"] = all_object_score_logits
- return point_inputs, sam_outputs
|