| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663 |
- # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
- # pyre-unsafe
- import colorsys
- import logging
- import math
- import random
- from enum import Enum, unique
- import cv2
- import matplotlib as mpl
- import matplotlib.colors as mplc
- import matplotlib.figure as mplfigure
- import numpy as np
- import pycocotools.mask as mask_util
- import torch
- from iopath.common.file_io import PathManager
- from matplotlib.backends.backend_agg import FigureCanvasAgg
- from PIL import Image
- from .boxes import Boxes, BoxMode
- from .color_map import random_color
- from .keypoints import Keypoints
- from .masks import BitMasks, PolygonMasks
- from .rotated_boxes import RotatedBoxes
- logger = logging.getLogger(__name__)
- __all__ = ["ColorMode", "VisImage", "Visualizer"]
- _SMALL_OBJECT_AREA_THRESH = 1000
- _LARGE_MASK_AREA_THRESH = 120000
- _OFF_WHITE = (1.0, 1.0, 240.0 / 255)
- _BLACK = (0, 0, 0)
- _RED = (1.0, 0, 0)
- _KEYPOINT_THRESHOLD = 0.05
- @unique
- class ColorMode(Enum):
- """
- Enum of different color modes to use for instance visualizations.
- """
- IMAGE = 0
- """
- Picks a random color for every instance and overlay segmentations with low opacity.
- """
- SEGMENTATION = 1
- """
- Let instances of the same category have similar colors
- (from metadata.thing_colors), and overlay them with
- high opacity. This provides more attention on the quality of segmentation.
- """
- IMAGE_BW = 2
- """
- Same as IMAGE, but convert all areas without masks to gray-scale.
- Only available for drawing per-instance mask predictions.
- """
- class GenericMask:
- """
- Attribute:
- polygons (list[ndarray]): list[ndarray]: polygons for this mask.
- Each ndarray has format [x, y, x, y, ...]
- mask (ndarray): a binary mask
- """
- def __init__(self, mask_or_polygons, height, width):
- self._mask = self._polygons = self._has_holes = None
- self.height = height
- self.width = width
- m = mask_or_polygons
- if isinstance(m, dict):
- # RLEs
- assert "counts" in m and "size" in m
- if isinstance(m["counts"], list): # uncompressed RLEs
- h, w = m["size"]
- assert h == height and w == width
- m = mask_util.frPyObjects(m, h, w)
- self._mask = mask_util.decode(m)[:, :]
- return
- if isinstance(m, list): # list[ndarray]
- self._polygons = [np.asarray(x).reshape(-1) for x in m]
- return
- if isinstance(m, np.ndarray): # assumed to be a binary mask
- assert m.shape[1] != 2, m.shape
- assert m.shape == (
- height,
- width,
- ), f"mask shape: {m.shape}, target dims: {height}, {width}"
- self._mask = m.astype("uint8")
- return
- raise ValueError(
- "GenericMask cannot handle object {} of type '{}'".format(m, type(m))
- )
- @property
- def mask(self):
- if self._mask is None:
- self._mask = self.polygons_to_mask(self._polygons)
- return self._mask
- @property
- def polygons(self):
- if self._polygons is None:
- self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
- return self._polygons
- @property
- def has_holes(self):
- if self._has_holes is None:
- if self._mask is not None:
- self._polygons, self._has_holes = self.mask_to_polygons(self._mask)
- else:
- self._has_holes = (
- False # if original format is polygon, does not have holes
- )
- return self._has_holes
- def mask_to_polygons(self, mask):
- # cv2.RETR_CCOMP flag retrieves all the contours and arranges them to a 2-level
- # hierarchy. External contours (boundary) of the object are placed in hierarchy-1.
- # Internal contours (holes) are placed in hierarchy-2.
- # cv2.CHAIN_APPROX_NONE flag gets vertices of polygons from contours.
- mask = np.ascontiguousarray(
- mask
- ) # some versions of cv2 does not support incontiguous arr
- res = cv2.findContours(
- mask.astype("uint8"), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE
- )
- hierarchy = res[-1]
- if hierarchy is None: # empty mask
- return [], False
- has_holes = (hierarchy.reshape(-1, 4)[:, 3] >= 0).sum() > 0
- res = res[-2]
- res = [x.flatten() for x in res]
- # These coordinates from OpenCV are integers in range [0, W-1 or H-1].
- # We add 0.5 to turn them into real-value coordinate space. A better solution
- # would be to first +0.5 and then dilate the returned polygon by 0.5.
- res = [x + 0.5 for x in res if len(x) >= 6]
- return res, has_holes
- def polygons_to_mask(self, polygons):
- rle = mask_util.frPyObjects(polygons, self.height, self.width)
- rle = mask_util.merge(rle)
- return mask_util.decode(rle)[:, :]
- def area(self):
- return self.mask.sum()
- def bbox(self):
- p = mask_util.frPyObjects(self.polygons, self.height, self.width)
- p = mask_util.merge(p)
- bbox = mask_util.toBbox(p)
- bbox[2] += bbox[0]
- bbox[3] += bbox[1]
- return bbox
- class _PanopticPrediction:
- """
- Unify different panoptic annotation/prediction formats
- """
- def __init__(self, panoptic_seg, segments_info, metadata=None):
- if segments_info is None:
- assert metadata is not None
- # If "segments_info" is None, we assume "panoptic_img" is a
- # H*W int32 image storing the panoptic_id in the format of
- # category_id * label_divisor + instance_id. We reserve -1 for
- # VOID label.
- label_divisor = metadata.label_divisor
- segments_info = []
- for panoptic_label in np.unique(panoptic_seg.numpy()):
- if panoptic_label == -1:
- # VOID region.
- continue
- pred_class = panoptic_label // label_divisor
- isthing = (
- pred_class in metadata.thing_dataset_id_to_contiguous_id.values()
- )
- segments_info.append(
- {
- "id": int(panoptic_label),
- "category_id": int(pred_class),
- "isthing": bool(isthing),
- }
- )
- del metadata
- self._seg = panoptic_seg
- self._sinfo = {s["id"]: s for s in segments_info} # seg id -> seg info
- segment_ids, areas = torch.unique(panoptic_seg, sorted=True, return_counts=True)
- areas = areas.numpy()
- sorted_idxs = np.argsort(-areas)
- self._seg_ids, self._seg_areas = segment_ids[sorted_idxs], areas[sorted_idxs]
- self._seg_ids = self._seg_ids.tolist()
- for sid, area in zip(self._seg_ids, self._seg_areas):
- if sid in self._sinfo:
- self._sinfo[sid]["area"] = float(area)
- def non_empty_mask(self):
- """
- Returns:
- (H, W) array, a mask for all pixels that have a prediction
- """
- empty_ids = []
- for id in self._seg_ids:
- if id not in self._sinfo:
- empty_ids.append(id)
- if len(empty_ids) == 0:
- return np.zeros(self._seg.shape, dtype=np.uint8)
- assert len(empty_ids) == 1, (
- ">1 ids corresponds to no labels. This is currently not supported"
- )
- return (self._seg != empty_ids[0]).numpy().astype(np.bool)
- def semantic_masks(self):
- for sid in self._seg_ids:
- sinfo = self._sinfo.get(sid)
- if sinfo is None or sinfo["isthing"]:
- # Some pixels (e.g. id 0 in PanopticFPN) have no instance or semantic predictions.
- continue
- yield (self._seg == sid).numpy().astype(np.bool), sinfo
- def instance_masks(self):
- for sid in self._seg_ids:
- sinfo = self._sinfo.get(sid)
- if sinfo is None or not sinfo["isthing"]:
- continue
- mask = (self._seg == sid).numpy().astype(np.bool)
- if mask.sum() > 0:
- yield mask, sinfo
- def _create_text_labels(classes, scores, class_names, is_crowd=None):
- """
- Args:
- classes (list[int] or None):
- scores (list[float] or None):
- class_names (list[str] or None):
- is_crowd (list[bool] or None):
- Returns:
- list[str] or None
- """
- labels = None
- if classes is not None:
- if class_names is not None and len(class_names) > 0:
- labels = [class_names[i] for i in classes]
- else:
- labels = [str(i) for i in classes]
- if scores is not None:
- if labels is None:
- labels = ["{:.0f}%".format(s * 100) for s in scores]
- else:
- labels = ["{} {:.0f}%".format(l, s * 100) for l, s in zip(labels, scores)]
- if labels is not None and is_crowd is not None:
- labels = [l + ("|crowd" if crowd else "") for l, crowd in zip(labels, is_crowd)]
- return labels
- class VisImage:
- def __init__(self, img, scale=1.0):
- """
- Args:
- img (ndarray): an RGB image of shape (H, W, 3) in range [0, 255].
- scale (float): scale the input image
- """
- self.img = img
- self.scale = scale
- self.width, self.height = img.shape[1], img.shape[0]
- self._setup_figure(img)
- def _setup_figure(self, img):
- """
- Args:
- Same as in :meth:`__init__()`.
- Returns:
- fig (matplotlib.pyplot.figure): top level container for all the image plot elements.
- ax (matplotlib.pyplot.Axes): contains figure elements and sets the coordinate system.
- """
- fig = mplfigure.Figure(frameon=False)
- self.dpi = fig.get_dpi()
- # add a small 1e-2 to avoid precision lost due to matplotlib's truncation
- # (https://github.com/matplotlib/matplotlib/issues/15363)
- fig.set_size_inches(
- (self.width * self.scale + 1e-2) / self.dpi,
- (self.height * self.scale + 1e-2) / self.dpi,
- )
- self.canvas = FigureCanvasAgg(fig)
- # self.canvas = mpl.backends.backend_cairo.FigureCanvasCairo(fig)
- ax = fig.add_axes([0.0, 0.0, 1.0, 1.0])
- ax.axis("off")
- self.fig = fig
- self.ax = ax
- self.reset_image(img)
- def reset_image(self, img):
- """
- Args:
- img: same as in __init__
- """
- img = img.astype("uint8")
- self.ax.imshow(
- img, extent=(0, self.width, self.height, 0), interpolation="nearest"
- )
- def save(self, filepath):
- """
- Args:
- filepath (str): a string that contains the absolute path, including the file name, where
- the visualized image will be saved.
- """
- self.fig.savefig(filepath)
- def get_image(self):
- """
- Returns:
- ndarray:
- the visualized image of shape (H, W, 3) (RGB) in uint8 type.
- The shape is scaled w.r.t the input image using the given `scale` argument.
- """
- canvas = self.canvas
- s, (width, height) = canvas.print_to_buffer()
- # buf = io.BytesIO() # works for cairo backend
- # canvas.print_rgba(buf)
- # width, height = self.width, self.height
- # s = buf.getvalue()
- buffer = np.frombuffer(s, dtype="uint8")
- img_rgba = buffer.reshape(height, width, 4)
- rgb, alpha = np.split(img_rgba, [3], axis=2)
- return rgb.astype("uint8")
- class Visualizer:
- """
- Visualizer that draws data about detection/segmentation on images.
- It contains methods like `draw_{text,box,circle,line,binary_mask,polygon}`
- that draw primitive objects to images, as well as high-level wrappers like
- `draw_{instance_predictions,sem_seg,panoptic_seg_predictions,dataset_dict}`
- that draw composite data in some pre-defined style.
- Note that the exact visualization style for the high-level wrappers are subject to change.
- Style such as color, opacity, label contents, visibility of labels, or even the visibility
- of objects themselves (e.g. when the object is too small) may change according
- to different heuristics, as long as the results still look visually reasonable.
- To obtain a consistent style, you can implement custom drawing functions with the
- abovementioned primitive methods instead. If you need more customized visualization
- styles, you can process the data yourself following their format documented in
- tutorials (:doc:`/tutorials/models`, :doc:`/tutorials/datasets`). This class does not
- intend to satisfy everyone's preference on drawing styles.
- This visualizer focuses on high rendering quality rather than performance. It is not
- designed to be used for real-time applications.
- """
- def __init__(
- self,
- img_rgb,
- metadata=None,
- scale=1.0,
- instance_mode=ColorMode.IMAGE,
- font_size_multiplier=1.3,
- boarder_width_multiplier=1.5,
- ):
- """
- Args:
- img_rgb: a numpy array of shape (H, W, C), where H and W correspond to
- the height and width of the image respectively. C is the number of
- color channels. The image is required to be in RGB format since that
- is a requirement of the Matplotlib library. The image is also expected
- to be in the range [0, 255].
- metadata (Metadata): dataset metadata (e.g. class names and colors)
- instance_mode (ColorMode): defines one of the pre-defined style for drawing
- instances on an image.
- """
- self.img = np.asarray(img_rgb).clip(0, 255).astype(np.uint8)
- self.boarder_width_multiplier = boarder_width_multiplier
- # if metadata is None:
- # metadata = MetadataCatalog.get("__nonexist__")
- # self.metadata = metadata
- self.output = VisImage(self.img, scale=scale)
- self.cpu_device = torch.device("cpu")
- # too small texts are useless, therefore clamp to 9
- self._default_font_size = (
- max(np.sqrt(self.output.height * self.output.width) // 60, 15 // scale)
- * font_size_multiplier
- )
- # self._default_font_size = 18
- self._instance_mode = instance_mode
- self.keypoint_threshold = _KEYPOINT_THRESHOLD
- import matplotlib.colors as mcolors
- css4_colors = mcolors.CSS4_COLORS
- self.color_proposals = [
- list(mcolors.hex2color(color)) for color in css4_colors.values()
- ]
- def draw_instance_predictions(self, predictions):
- """
- Draw instance-level prediction results on an image.
- Args:
- predictions (Instances): the output of an instance detection/segmentation
- model. Following fields will be used to draw:
- "pred_boxes", "pred_classes", "scores", "pred_masks" (or "pred_masks_rle").
- Returns:
- output (VisImage): image object with visualizations.
- """
- boxes = predictions.pred_boxes if predictions.has("pred_boxes") else None
- scores = predictions.scores if predictions.has("scores") else None
- classes = (
- predictions.pred_classes.tolist()
- if predictions.has("pred_classes")
- else None
- )
- labels = _create_text_labels(
- classes, scores, self.metadata.get("thing_classes", None)
- )
- keypoints = (
- predictions.pred_keypoints if predictions.has("pred_keypoints") else None
- )
- keep = (scores > 0.5).cpu()
- boxes = boxes[keep]
- scores = scores[keep]
- classes = np.array(classes)
- classes = classes[np.array(keep)]
- labels = np.array(labels)
- labels = labels[np.array(keep)]
- if predictions.has("pred_masks"):
- masks = np.asarray(predictions.pred_masks)
- masks = masks[np.array(keep)]
- masks = [
- GenericMask(x, self.output.height, self.output.width) for x in masks
- ]
- else:
- masks = None
- if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get(
- "thing_colors"
- ):
- # if self.metadata.get("thing_colors"):
- colors = [
- self._jitter([x / 255 for x in self.metadata.thing_colors[c]])
- for c in classes
- ]
- alpha = 0.4
- else:
- colors = None
- alpha = 0.4
- if self._instance_mode == ColorMode.IMAGE_BW:
- self.output.reset_image(
- self._create_grayscale_image(
- (predictions.pred_masks.any(dim=0) > 0).numpy()
- if predictions.has("pred_masks")
- else None
- )
- )
- alpha = 0.3
- self.overlay_instances(
- masks=masks,
- boxes=boxes,
- labels=labels,
- keypoints=keypoints,
- assigned_colors=colors,
- alpha=alpha,
- )
- return self.output
- def draw_sem_seg(self, sem_seg, area_threshold=None, alpha=0.7):
- """
- Draw semantic segmentation predictions/labels.
- Args:
- sem_seg (Tensor or ndarray): the segmentation of shape (H, W).
- Each value is the integer label of the pixel.
- area_threshold (int): segments with less than `area_threshold` are not drawn.
- alpha (float): the larger it is, the more opaque the segmentations are.
- Returns:
- output (VisImage): image object with visualizations.
- """
- if isinstance(sem_seg, torch.Tensor):
- sem_seg = sem_seg.numpy()
- labels, areas = np.unique(sem_seg, return_counts=True)
- sorted_idxs = np.argsort(-areas).tolist()
- labels = labels[sorted_idxs]
- for label in filter(lambda l: l < len(self.metadata.stuff_classes), labels):
- try:
- mask_color = [x / 255 for x in self.metadata.stuff_colors[label]]
- except (AttributeError, IndexError):
- mask_color = None
- binary_mask = (sem_seg == label).astype(np.uint8)
- text = self.metadata.stuff_classes[label]
- self.draw_binary_mask(
- binary_mask,
- color=mask_color,
- edge_color=_OFF_WHITE,
- text=text,
- alpha=alpha,
- area_threshold=area_threshold,
- )
- return self.output
- def draw_panoptic_seg(
- self, panoptic_seg, segments_info, area_threshold=None, alpha=0.7
- ):
- """
- Draw panoptic prediction annotations or results.
- Args:
- panoptic_seg (Tensor): of shape (height, width) where the values are ids for each
- segment.
- segments_info (list[dict] or None): Describe each segment in `panoptic_seg`.
- If it is a ``list[dict]``, each dict contains keys "id", "category_id".
- If None, category id of each pixel is computed by
- ``pixel // metadata.label_divisor``.
- area_threshold (int): stuff segments with less than `area_threshold` are not drawn.
- Returns:
- output (VisImage): image object with visualizations.
- """
- pred = _PanopticPrediction(panoptic_seg, segments_info, self.metadata)
- if self._instance_mode == ColorMode.IMAGE_BW:
- self.output.reset_image(self._create_grayscale_image(pred.non_empty_mask()))
- # draw mask for all semantic segments first i.e. "stuff"
- for mask, sinfo in pred.semantic_masks():
- category_idx = sinfo["category_id"]
- try:
- mask_color = [x / 255 for x in self.metadata.stuff_colors[category_idx]]
- except AttributeError:
- mask_color = None
- text = (
- self.metadata.stuff_classes[category_idx]
- .replace("-other", "")
- .replace("-merged", "")
- )
- self.draw_binary_mask(
- mask,
- color=mask_color,
- edge_color=_OFF_WHITE,
- text=text,
- alpha=alpha,
- area_threshold=area_threshold,
- )
- # draw mask for all instances second
- all_instances = list(pred.instance_masks())
- if len(all_instances) == 0:
- return self.output
- masks, sinfo = list(zip(*all_instances))
- category_ids = [x["category_id"] for x in sinfo]
- try:
- scores = [x["score"] for x in sinfo]
- except KeyError:
- scores = None
- class_names = [
- name.replace("-other", "").replace("-merged", "")
- for name in self.metadata.thing_classes
- ]
- labels = _create_text_labels(
- category_ids, scores, class_names, [x.get("iscrowd", 0) for x in sinfo]
- )
- try:
- colors = [
- self._jitter([x / 255 for x in self.metadata.thing_colors[c]])
- for c in category_ids
- ]
- except AttributeError:
- colors = None
- self.overlay_instances(
- masks=masks, labels=labels, assigned_colors=colors, alpha=alpha
- )
- return self.output
- draw_panoptic_seg_predictions = draw_panoptic_seg # backward compatibility
- def draw_dataset_dict(self, dic):
- """
- Draw annotations/segmentaions in Detectron2 Dataset format.
- Args:
- dic (dict): annotation/segmentation data of one image, in Detectron2 Dataset format.
- Returns:
- output (VisImage): image object with visualizations.
- """
- annos = dic.get("annotations", None)
- if annos:
- if "segmentation" in annos[0]:
- masks = [x["segmentation"] for x in annos]
- else:
- masks = None
- if "keypoints" in annos[0]:
- keypts = [x["keypoints"] for x in annos]
- keypts = np.array(keypts).reshape(len(annos), -1, 3)
- else:
- keypts = None
- boxes = [
- (
- BoxMode.convert(x["bbox"], x["bbox_mode"], BoxMode.XYXY_ABS)
- if len(x["bbox"]) == 4
- else x["bbox"]
- )
- for x in annos
- ]
- colors = None
- category_ids = [x["category_id"] for x in annos]
- if self._instance_mode == ColorMode.SEGMENTATION and self.metadata.get(
- "thing_colors"
- ):
- colors = [
- self._jitter([x / 255 for x in self.metadata.thing_colors[c]])
- for c in category_ids
- ]
- names = self.metadata.get("thing_classes", None)
- labels = _create_text_labels(
- category_ids,
- scores=None,
- class_names=names,
- is_crowd=[x.get("iscrowd", 0) for x in annos],
- )
- self.overlay_instances(
- labels=labels,
- boxes=boxes,
- masks=masks,
- keypoints=keypts,
- assigned_colors=colors,
- )
- sem_seg = dic.get("sem_seg", None)
- if sem_seg is None and "sem_seg_file_name" in dic:
- with PathManager.open(dic["sem_seg_file_name"], "rb") as f:
- sem_seg = Image.open(f)
- sem_seg = np.asarray(sem_seg, dtype="uint8")
- if sem_seg is not None:
- self.draw_sem_seg(sem_seg, area_threshold=0, alpha=0.4)
- pan_seg = dic.get("pan_seg", None)
- if pan_seg is None and "pan_seg_file_name" in dic:
- with PathManager.open(dic["pan_seg_file_name"], "rb") as f:
- pan_seg = Image.open(f)
- pan_seg = np.asarray(pan_seg)
- from panopticapi.utils import rgb2id
- pan_seg = rgb2id(pan_seg)
- if pan_seg is not None:
- segments_info = dic["segments_info"]
- pan_seg = torch.tensor(pan_seg)
- self.draw_panoptic_seg(pan_seg, segments_info, area_threshold=0, alpha=0.7)
- return self.output
- def overlay_instances(
- self,
- *,
- boxes=None,
- labels=None,
- masks=None,
- keypoints=None,
- assigned_colors=None,
- binary_masks=None,
- alpha=0.5,
- label_mode="1",
- ):
- """
- Args:
- boxes (Boxes, RotatedBoxes or ndarray): either a :class:`Boxes`,
- or an Nx4 numpy array of XYXY_ABS format for the N objects in a single image,
- or a :class:`RotatedBoxes`,
- or an Nx5 numpy array of (x_center, y_center, width, height, angle_degrees) format
- for the N objects in a single image,
- labels (list[str]): the text to be displayed for each instance.
- masks (masks-like object): Supported types are:
- * :class:`detectron2.structures.PolygonMasks`,
- :class:`detectron2.structures.BitMasks`.
- * list[list[ndarray]]: contains the segmentation masks for all objects in one image.
- The first level of the list corresponds to individual instances. The second
- level to all the polygon that compose the instance, and the third level
- to the polygon coordinates. The third level should have the format of
- [x0, y0, x1, y1, ..., xn, yn] (n >= 3).
- * list[ndarray]: each ndarray is a binary mask of shape (H, W).
- * list[dict]: each dict is a COCO-style RLE.
- keypoints (Keypoint or array like): an array-like object of shape (N, K, 3),
- where the N is the number of instances and K is the number of keypoints.
- The last dimension corresponds to (x, y, visibility or score).
- assigned_colors (list[matplotlib.colors]): a list of colors, where each color
- corresponds to each mask or box in the image. Refer to 'matplotlib.colors'
- for full list of formats that the colors are accepted in.
- Returns:
- output (VisImage): image object with visualizations.
- """
- num_instances = 0
- if boxes is not None:
- boxes = self._convert_boxes(boxes)
- num_instances = len(boxes)
- if masks is not None:
- masks = self._convert_masks(masks)
- if num_instances:
- assert len(masks) == num_instances
- else:
- num_instances = len(masks)
- if keypoints is not None:
- if num_instances:
- assert len(keypoints) == num_instances
- else:
- num_instances = len(keypoints)
- keypoints = self._convert_keypoints(keypoints)
- if labels is not None:
- assert len(labels) == num_instances
- if assigned_colors is None:
- assigned_colors = [
- random_color(rgb=True, maximum=1) for _ in range(num_instances)
- ]
- if num_instances == 0:
- return labels, [], []
- if boxes is not None and boxes.shape[1] == 5:
- return self.overlay_rotated_instances(
- boxes=boxes, labels=labels, assigned_colors=assigned_colors
- )
- # Display in largest to smallest order to reduce occlusion.
- areas = None
- if boxes is not None:
- areas = np.prod(boxes[:, 2:] - boxes[:, :2], axis=1)
- elif masks is not None:
- areas = np.asarray([x.area() for x in masks])
- # if areas is not None:
- # # sorted_idxs = np.argsort(areas).tolist()
- # sorted_idxs = np.argsort(-areas).tolist()
- # # Re-order overlapped instances in descending order.
- # boxes = boxes[sorted_idxs] if boxes is not None else None
- # labels = [labels[k] for k in sorted_idxs] if labels is not None else None
- # masks = [masks[idx] for idx in sorted_idxs] if masks is not None else None
- # binary_masks = (
- # [binary_masks[idx] for idx in sorted_idxs]
- # if binary_masks is not None
- # else None
- # )
- # assigned_colors = [assigned_colors[idx] for idx in sorted_idxs]
- # keypoints = keypoints[sorted_idxs] if keypoints is not None else None
- marks = []
- marks_position = []
- added_positions = set()
- for i in range(num_instances):
- color = assigned_colors[i]
- if boxes is not None:
- self.draw_box(boxes[i], alpha=1, edge_color=color)
- if binary_masks is None:
- # draw number for non-mask instances
- mark = self._draw_number_in_box(
- boxes[i], i + 1, color=color, label_mode=label_mode
- )
- marks.append(mark)
- if binary_masks is not None:
- mark, mask_position = self._draw_number_in_mask(
- binary_mask=binary_masks[i].astype("uint8"),
- text=i + 1,
- color=color,
- added_positions=added_positions,
- label_mode=label_mode,
- )
- marks.append(mark)
- marks_position.append(mask_position)
- self.draw_binary_mask(
- binary_masks[i],
- color=color,
- edge_color=_OFF_WHITE,
- alpha=alpha,
- )
- if masks is not None:
- for segment in masks[i].polygons:
- self.draw_polygon(
- segment.reshape(-1, 2), color, alpha=0
- ) # alpha=0 so holes in masks are not colored
- # draw keypoints
- if keypoints is not None:
- for keypoints_per_instance in keypoints:
- self.draw_and_connect_keypoints(keypoints_per_instance)
- # return labels, marks, sorted_idxs, marks_position
- return labels, marks, marks_position
- def overlay_rotated_instances(self, boxes=None, labels=None, assigned_colors=None):
- """
- Args:
- boxes (ndarray): an Nx5 numpy array of
- (x_center, y_center, width, height, angle_degrees) format
- for the N objects in a single image.
- labels (list[str]): the text to be displayed for each instance.
- assigned_colors (list[matplotlib.colors]): a list of colors, where each color
- corresponds to each mask or box in the image. Refer to 'matplotlib.colors'
- for full list of formats that the colors are accepted in.
- Returns:
- output (VisImage): image object with visualizations.
- """
- num_instances = len(boxes)
- if assigned_colors is None:
- assigned_colors = [
- random_color(rgb=True, maximum=1) for _ in range(num_instances)
- ]
- if num_instances == 0:
- return self.output
- # Display in largest to smallest order to reduce occlusion.
- if boxes is not None:
- areas = boxes[:, 2] * boxes[:, 3]
- sorted_idxs = np.argsort(-areas).tolist()
- # Re-order overlapped instances in descending order.
- boxes = boxes[sorted_idxs]
- labels = [labels[k] for k in sorted_idxs] if labels is not None else None
- colors = [assigned_colors[idx] for idx in sorted_idxs]
- for i in range(num_instances):
- self.draw_rotated_box_with_label(
- boxes[i],
- edge_color=colors[i],
- label=labels[i] if labels is not None else None,
- )
- return self.output
- def draw_and_connect_keypoints(self, keypoints):
- """
- Draws keypoints of an instance and follows the rules for keypoint connections
- to draw lines between appropriate keypoints. This follows color heuristics for
- line color.
- Args:
- keypoints (Tensor): a tensor of shape (K, 3), where K is the number of keypoints
- and the last dimension corresponds to (x, y, probability).
- Returns:
- output (VisImage): image object with visualizations.
- """
- visible = {}
- keypoint_names = self.metadata.get("keypoint_names")
- for idx, keypoint in enumerate(keypoints):
- # draw keypoint
- x, y, prob = keypoint
- if prob > self.keypoint_threshold:
- self.draw_circle((x, y), color=_RED)
- if keypoint_names:
- keypoint_name = keypoint_names[idx]
- visible[keypoint_name] = (x, y)
- if self.metadata.get("keypoint_connection_rules"):
- for kp0, kp1, color in self.metadata.keypoint_connection_rules:
- if kp0 in visible and kp1 in visible:
- x0, y0 = visible[kp0]
- x1, y1 = visible[kp1]
- color = tuple(x / 255.0 for x in color)
- self.draw_line([x0, x1], [y0, y1], color=color)
- # draw lines from nose to mid-shoulder and mid-shoulder to mid-hip
- # Note that this strategy is specific to person keypoints.
- # For other keypoints, it should just do nothing
- try:
- ls_x, ls_y = visible["left_shoulder"]
- rs_x, rs_y = visible["right_shoulder"]
- mid_shoulder_x, mid_shoulder_y = (ls_x + rs_x) / 2, (ls_y + rs_y) / 2
- except KeyError:
- pass
- else:
- # draw line from nose to mid-shoulder
- nose_x, nose_y = visible.get("nose", (None, None))
- if nose_x is not None:
- self.draw_line(
- [nose_x, mid_shoulder_x], [nose_y, mid_shoulder_y], color=_RED
- )
- try:
- # draw line from mid-shoulder to mid-hip
- lh_x, lh_y = visible["left_hip"]
- rh_x, rh_y = visible["right_hip"]
- except KeyError:
- pass
- else:
- mid_hip_x, mid_hip_y = (lh_x + rh_x) / 2, (lh_y + rh_y) / 2
- self.draw_line(
- [mid_hip_x, mid_shoulder_x], [mid_hip_y, mid_shoulder_y], color=_RED
- )
- return self.output
- def mask_dims_from_binary(self, binary_mask):
- ind_y, ind_x = np.where(binary_mask == 1)
- min_ind_x = np.min(ind_x)
- max_ind_x = np.max(ind_x)
- min_ind_y = np.min(ind_y)
- max_ind_y = np.max(ind_y)
- return (max_ind_x - min_ind_x), (max_ind_y - min_ind_y)
- def reposition_label(self, position, cur, binary_mask, move_count):
- img_width, img_height = self.output.width, self.output.height
- mask_width, mask_height = self.mask_dims_from_binary(binary_mask)
- # set resposition thresholds
- mask_width_limit, mask_height_limit = (
- 25,
- 25,
- ) # limit for width and height size for object covering
- location_diff_threshold = 15 # limit for the distance between two labels
- x_boundry_limit, y_boundry_limit = (
- 20,
- 20,
- ) # limit for the distancing the label from edges
- offset_x = 15 # move in x direction
- offset_y = 15 # move in y direction
- x1, y1 = position
- if (
- mask_width < mask_width_limit
- and mask_height < mask_height_limit
- and move_count == 0
- ):
- move_x = offset_x if offset_x + x1 < img_width else -offset_x
- move_y = offset_y if offset_y + y1 < img_height else -offset_y
- return (True, move_x, move_y)
- for x2, y2 in cur:
- if abs(x1 - x2) + abs(y1 - y2) < location_diff_threshold:
- move_x = offset_x if x1 >= x2 else -offset_x
- move_y = offset_y if y1 >= y2 else -offset_y
- move_x = (
- 0
- if x1 + move_x > img_width - x_boundry_limit
- or x1 + move_x < x_boundry_limit
- else move_x
- )
- move_y = (
- 0
- if y1 + move_y > img_height - y_boundry_limit
- or y1 + move_y < y_boundry_limit
- else move_y
- )
- return (
- True,
- move_x,
- move_y,
- )
- return (False, 0, 0)
- def locate_label_position(self, original_position, added_positions, binary_mask):
- if added_positions is None or binary_mask is None:
- return original_position
- x, y = original_position
- move_count = 0
- reposition, x_move, y_move = self.reposition_label(
- (x, y), added_positions, binary_mask, move_count
- )
- while reposition and move_count < 10:
- x += x_move
- y += y_move
- move_count += 1
- reposition, x_move, y_move = self.reposition_label(
- (x, y), added_positions, binary_mask, move_count
- )
- added_positions.add((x, y))
- return x, y
- """
- Primitive drawing functions:
- """
- def draw_text(
- self,
- text,
- position,
- added_positions=None,
- binary_mask=None,
- *,
- font_size=None,
- color="g",
- horizontal_alignment="center",
- rotation=0,
- ):
- """
- Args:
- text (str): class label
- position (tuple): a tuple of the x and y coordinates to place text on image.
- font_size (int, optional): font of the text. If not provided, a font size
- proportional to the image width is calculated and used.
- color: color of the text. Refer to `matplotlib.colors` for full list
- of formats that are accepted.
- horizontal_alignment (str): see `matplotlib.text.Text`
- rotation: rotation angle in degrees CCW
- Returns:
- output (VisImage): image object with text drawn.
- """
- if not font_size:
- font_size = self._default_font_size
- # since the text background is dark, we don't want the text to be dark
- color = np.maximum(list(mplc.to_rgb(color)), 0.15)
- color[np.argmax(color)] = max(0.8, np.max(color))
- def contrasting_color(rgb):
- """Returns 'white' or 'black' depending on which color contrasts more with the given RGB value."""
- # Decompose the RGB tuple
- R, G, B = rgb
- # Calculate the Y value
- Y = 0.299 * R + 0.587 * G + 0.114 * B
- # If Y value is greater than 128, it's closer to white so return black. Otherwise, return white.
- return "black" if Y > 128 else "white"
- bbox_background = contrasting_color(color * 255)
- x, y = self.locate_label_position(
- original_position=position,
- added_positions=added_positions,
- binary_mask=binary_mask,
- )
- self.output.ax.text(
- x,
- y,
- text,
- size=font_size * self.output.scale,
- family="sans-serif",
- bbox={
- "facecolor": bbox_background,
- "alpha": 0.8,
- "pad": 0.7,
- "edgecolor": "none",
- },
- verticalalignment="top",
- horizontalalignment=horizontal_alignment,
- color=color,
- zorder=10,
- rotation=rotation,
- )
- return self.output
- def draw_box(self, box_coord, alpha=0.5, edge_color="g", line_style="-"):
- """
- Args:
- box_coord (tuple): a tuple containing x0, y0, x1, y1 coordinates, where x0 and y0
- are the coordinates of the image's top left corner. x1 and y1 are the
- coordinates of the image's bottom right corner.
- alpha (float): blending efficient. Smaller values lead to more transparent masks.
- edge_color: color of the outline of the box. Refer to `matplotlib.colors`
- for full list of formats that are accepted.
- line_style (string): the string to use to create the outline of the boxes.
- Returns:
- output (VisImage): image object with box drawn.
- """
- x0, y0, x1, y1 = box_coord
- width = x1 - x0
- height = y1 - y0
- linewidth = max(self._default_font_size / 12, 1) * self.boarder_width_multiplier
- self.output.ax.add_patch(
- mpl.patches.Rectangle(
- (x0, y0),
- width,
- height,
- fill=False,
- edgecolor=edge_color,
- linewidth=linewidth * self.output.scale,
- alpha=alpha,
- linestyle=line_style,
- )
- )
- return self.output
- def draw_rotated_box_with_label(
- self, rotated_box, alpha=0.5, edge_color="g", line_style="-", label=None
- ):
- """
- Draw a rotated box with label on its top-left corner.
- Args:
- rotated_box (tuple): a tuple containing (cnt_x, cnt_y, w, h, angle),
- where cnt_x and cnt_y are the center coordinates of the box.
- w and h are the width and height of the box. angle represents how
- many degrees the box is rotated CCW with regard to the 0-degree box.
- alpha (float): blending efficient. Smaller values lead to more transparent masks.
- edge_color: color of the outline of the box. Refer to `matplotlib.colors`
- for full list of formats that are accepted.
- line_style (string): the string to use to create the outline of the boxes.
- label (string): label for rotated box. It will not be rendered when set to None.
- Returns:
- output (VisImage): image object with box drawn.
- """
- cnt_x, cnt_y, w, h, angle = rotated_box
- area = w * h
- # use thinner lines when the box is small
- linewidth = self._default_font_size / (
- 6 if area < _SMALL_OBJECT_AREA_THRESH * self.output.scale else 3
- )
- theta = angle * math.pi / 180.0
- c = math.cos(theta)
- s = math.sin(theta)
- rect = [(-w / 2, h / 2), (-w / 2, -h / 2), (w / 2, -h / 2), (w / 2, h / 2)]
- # x: left->right ; y: top->down
- rotated_rect = [
- (s * yy + c * xx + cnt_x, c * yy - s * xx + cnt_y) for (xx, yy) in rect
- ]
- for k in range(4):
- j = (k + 1) % 4
- self.draw_line(
- [rotated_rect[k][0], rotated_rect[j][0]],
- [rotated_rect[k][1], rotated_rect[j][1]],
- color=edge_color,
- linestyle="--" if k == 1 else line_style,
- linewidth=linewidth,
- )
- if label is not None:
- text_pos = rotated_rect[1] # topleft corner
- height_ratio = h / np.sqrt(self.output.height * self.output.width)
- label_color = self._change_color_brightness(
- edge_color, brightness_factor=0.7
- )
- font_size = (
- np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2)
- * 0.5
- * self._default_font_size
- )
- self.draw_text(
- label, text_pos, color=label_color, font_size=font_size, rotation=angle
- )
- return self.output
- def draw_circle(self, circle_coord, color, radius=3):
- """
- Args:
- circle_coord (list(int) or tuple(int)): contains the x and y coordinates
- of the center of the circle.
- color: color of the polygon. Refer to `matplotlib.colors` for a full list of
- formats that are accepted.
- radius (int): radius of the circle.
- Returns:
- output (VisImage): image object with box drawn.
- """
- x, y = circle_coord
- self.output.ax.add_patch(
- mpl.patches.Circle(circle_coord, radius=radius, fill=True, color=color)
- )
- return self.output
- def draw_line(self, x_data, y_data, color, linestyle="-", linewidth=None):
- """
- Args:
- x_data (list[int]): a list containing x values of all the points being drawn.
- Length of list should match the length of y_data.
- y_data (list[int]): a list containing y values of all the points being drawn.
- Length of list should match the length of x_data.
- color: color of the line. Refer to `matplotlib.colors` for a full list of
- formats that are accepted.
- linestyle: style of the line. Refer to `matplotlib.lines.Line2D`
- for a full list of formats that are accepted.
- linewidth (float or None): width of the line. When it's None,
- a default value will be computed and used.
- Returns:
- output (VisImage): image object with line drawn.
- """
- if linewidth is None:
- linewidth = self._default_font_size / 3
- linewidth = max(linewidth, 1)
- self.output.ax.add_line(
- mpl.lines.Line2D(
- x_data,
- y_data,
- linewidth=linewidth * self.output.scale,
- color=color,
- linestyle=linestyle,
- )
- )
- return self.output
- def draw_binary_mask(
- self,
- binary_mask,
- color=None,
- *,
- edge_color=None,
- text=None,
- alpha=0.7,
- area_threshold=10,
- ):
- """
- Args:
- binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and
- W is the image width. Each value in the array is either a 0 or 1 value of uint8
- type.
- color: color of the mask. Refer to `matplotlib.colors` for a full list of
- formats that are accepted. If None, will pick a random color.
- edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
- full list of formats that are accepted.
- text (str): if None, will be drawn on the object
- alpha (float): blending efficient. Smaller values lead to more transparent masks.
- area_threshold (float): a connected component smaller than this area will not be shown.
- Returns:
- output (VisImage): image object with mask drawn.
- """
- if color is None:
- color = random_color(rgb=True, maximum=1)
- color = mplc.to_rgb(color)
- has_valid_segment = False
- binary_mask = binary_mask.astype("uint8") # opencv needs uint8
- mask = GenericMask(binary_mask, self.output.height, self.output.width)
- shape2d = (binary_mask.shape[0], binary_mask.shape[1])
- if not mask.has_holes:
- # draw polygons for regular masks
- for segment in mask.polygons:
- area = mask_util.area(
- mask_util.frPyObjects([segment], shape2d[0], shape2d[1])
- )
- if area < (area_threshold or 0):
- continue
- has_valid_segment = True
- segment = segment.reshape(-1, 2)
- self.draw_polygon(
- segment, color=color, edge_color=edge_color, alpha=alpha
- )
- else:
- # https://stackoverflow.com/questions/8919719/how-to-plot-a-complex-polygon
- rgba = np.zeros(shape2d + (4,), dtype="float32")
- rgba[:, :, :3] = color
- rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha
- has_valid_segment = True
- self.output.ax.imshow(
- rgba, extent=(0, self.output.width, self.output.height, 0)
- )
- if text is not None and has_valid_segment:
- lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
- self._draw_text_in_mask(binary_mask, text, lighter_color)
- return self.output
- def draw_binary_mask_with_number(
- self,
- binary_mask,
- color=None,
- *,
- edge_color=None,
- text=None,
- label_mode="1",
- alpha=0.1,
- anno_mode=["Mask"],
- area_threshold=10,
- ):
- """
- Args:
- binary_mask (ndarray): numpy array of shape (H, W), where H is the image height and
- W is the image width. Each value in the array is either a 0 or 1 value of uint8
- type.
- color: color of the mask. Refer to `matplotlib.colors` for a full list of
- formats that are accepted. If None, will pick a random color.
- edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
- full list of formats that are accepted.
- text (str): if None, will be drawn on the object
- alpha (float): blending efficient. Smaller values lead to more transparent masks.
- area_threshold (float): a connected component smaller than this area will not be shown.
- Returns:
- output (VisImage): image object with mask drawn.
- """
- if color is None:
- randint = random.randint(0, len(self.color_proposals) - 1)
- color = self.color_proposals[randint]
- color = mplc.to_rgb(color)
- has_valid_segment = True
- binary_mask = binary_mask.astype("uint8") # opencv needs uint8
- mask = GenericMask(binary_mask, self.output.height, self.output.width)
- shape2d = (binary_mask.shape[0], binary_mask.shape[1])
- bbox = mask.bbox()
- if "Mask" in anno_mode:
- if not mask.has_holes:
- # draw polygons for regular masks
- for segment in mask.polygons:
- area = mask_util.area(
- mask_util.frPyObjects([segment], shape2d[0], shape2d[1])
- )
- if area < (area_threshold or 0):
- continue
- has_valid_segment = True
- segment = segment.reshape(-1, 2)
- self.draw_polygon(
- segment, color=color, edge_color=edge_color, alpha=alpha
- )
- else:
- # https://stackoverflow.com/questions/8919719/how-to-plot-a-complex-polygon
- rgba = np.zeros(shape2d + (4,), dtype="float32")
- rgba[:, :, :3] = color
- rgba[:, :, 3] = (mask.mask == 1).astype("float32") * alpha
- has_valid_segment = True
- self.output.ax.imshow(
- rgba, extent=(0, self.output.width, self.output.height, 0)
- )
- if "Box" in anno_mode:
- self.draw_box(bbox, edge_color=color, alpha=0.75)
- if "Mark" in anno_mode:
- has_valid_segment = True
- else:
- has_valid_segment = False
- if text is not None and has_valid_segment:
- # lighter_color = tuple([x*0.2 for x in color])
- lighter_color = [
- 1,
- 1,
- 1,
- ] # self._change_color_brightness(color, brightness_factor=0.7)
- self._draw_number_in_mask(
- binary_mask=binary_mask,
- text=text,
- color=lighter_color,
- label_mode=label_mode,
- )
- return self.output
- def draw_soft_mask(self, soft_mask, color=None, *, text=None, alpha=0.5):
- """
- Args:
- soft_mask (ndarray): float array of shape (H, W), each value in [0, 1].
- color: color of the mask. Refer to `matplotlib.colors` for a full list of
- formats that are accepted. If None, will pick a random color.
- text (str): if None, will be drawn on the object
- alpha (float): blending efficient. Smaller values lead to more transparent masks.
- Returns:
- output (VisImage): image object with mask drawn.
- """
- if color is None:
- color = random_color(rgb=True, maximum=1)
- color = mplc.to_rgb(color)
- shape2d = (soft_mask.shape[0], soft_mask.shape[1])
- rgba = np.zeros(shape2d + (4,), dtype="float32")
- rgba[:, :, :3] = color
- rgba[:, :, 3] = soft_mask * alpha
- self.output.ax.imshow(
- rgba, extent=(0, self.output.width, self.output.height, 0)
- )
- if text is not None:
- lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
- binary_mask = (soft_mask > 0.5).astype("uint8")
- self._draw_text_in_mask(binary_mask, text, lighter_color)
- return self.output
- def draw_polygon(self, segment, color, edge_color=None, alpha=0.5):
- """
- Args:
- segment: numpy array of shape Nx2, containing all the points in the polygon.
- color: color of the polygon. Refer to `matplotlib.colors` for a full list of
- formats that are accepted.
- edge_color: color of the polygon edges. Refer to `matplotlib.colors` for a
- full list of formats that are accepted. If not provided, a darker shade
- of the polygon color will be used instead.
- alpha (float): blending efficient. Smaller values lead to more transparent masks.
- Returns:
- output (VisImage): image object with polygon drawn.
- """
- if edge_color is None:
- # make edge color darker than the polygon color
- if alpha > 0.8:
- edge_color = self._change_color_brightness(
- color, brightness_factor=-0.7
- )
- else:
- edge_color = color
- edge_color = mplc.to_rgb(edge_color) + (1,)
- polygon = mpl.patches.Polygon(
- segment,
- fill=True,
- facecolor=mplc.to_rgb(color) + (alpha,),
- edgecolor=edge_color,
- linewidth=max(self._default_font_size // 15 * self.output.scale, 1),
- )
- self.output.ax.add_patch(polygon)
- return self.output
- """
- Internal methods:
- """
- def _jitter(self, color):
- """
- Randomly modifies given color to produce a slightly different color than the color given.
- Args:
- color (tuple[double]): a tuple of 3 elements, containing the RGB values of the color
- picked. The values in the list are in the [0.0, 1.0] range.
- Returns:
- jittered_color (tuple[double]): a tuple of 3 elements, containing the RGB values of the
- color after being jittered. The values in the list are in the [0.0, 1.0] range.
- """
- color = mplc.to_rgb(color)
- # np.random.seed(0)
- vec = np.random.rand(3)
- # better to do it in another color space
- vec = vec / np.linalg.norm(vec) * 0.5
- res = np.clip(vec + color, 0, 1)
- return tuple(res)
- def _create_grayscale_image(self, mask=None):
- """
- Create a grayscale version of the original image.
- The colors in masked area, if given, will be kept.
- """
- img_bw = self.img.astype("f4").mean(axis=2)
- img_bw = np.stack([img_bw] * 3, axis=2)
- if mask is not None:
- img_bw[mask] = self.img[mask]
- return img_bw
- def _change_color_brightness(self, color, brightness_factor):
- """
- Depending on the brightness_factor, gives a lighter or darker color i.e. a color with
- less or more saturation than the original color.
- Args:
- color: color of the polygon. Refer to `matplotlib.colors` for a full list of
- formats that are accepted.
- brightness_factor (float): a value in [-1.0, 1.0] range. A lightness factor of
- 0 will correspond to no change, a factor in [-1.0, 0) range will result in
- a darker color and a factor in (0, 1.0] range will result in a lighter color.
- Returns:
- modified_color (tuple[double]): a tuple containing the RGB values of the
- modified color. Each value in the tuple is in the [0.0, 1.0] range.
- """
- assert brightness_factor >= -1.0 and brightness_factor <= 1.0
- color = mplc.to_rgb(color)
- polygon_color = colorsys.rgb_to_hls(*mplc.to_rgb(color))
- modified_lightness = polygon_color[1] + (brightness_factor * polygon_color[1])
- modified_lightness = 0.0 if modified_lightness < 0.0 else modified_lightness
- modified_lightness = 1.0 if modified_lightness > 1.0 else modified_lightness
- modified_color = colorsys.hls_to_rgb(
- polygon_color[0], modified_lightness, polygon_color[2]
- )
- return modified_color
- def _convert_boxes(self, boxes):
- """
- Convert different format of boxes to an NxB array, where B = 4 or 5 is the box dimension.
- """
- if isinstance(boxes, Boxes) or isinstance(boxes, RotatedBoxes):
- return boxes.tensor.detach().numpy()
- else:
- return np.asarray(boxes)
- def _convert_masks(self, masks_or_polygons):
- """
- Convert different format of masks or polygons to a tuple of masks and polygons.
- Returns:
- list[GenericMask]:
- """
- m = masks_or_polygons
- if isinstance(m, PolygonMasks):
- m = m.polygons
- if isinstance(m, BitMasks):
- m = m.tensor.numpy()
- if isinstance(m, torch.Tensor):
- m = m.numpy()
- ret = []
- for x in m:
- if isinstance(x, GenericMask):
- ret.append(x)
- else:
- ret.append(GenericMask(x, self.output.height, self.output.width))
- return ret
- def _draw_number_in_box(self, box, text, color, label_mode="1"):
- """
- Find proper places to draw text given a box.
- """
- x0, y0, x1, y1 = box
- text_pos = (x0, y0) # if drawing boxes, put text on the box corner.
- horiz_align = "left"
- # for small objects, draw text at the side to avoid occlusion
- instance_area = (y1 - y0) * (x1 - x0)
- if (
- instance_area < _SMALL_OBJECT_AREA_THRESH * self.output.scale
- or y1 - y0 < 40 * self.output.scale
- ):
- if y1 >= self.output.height - 5:
- text_pos = (x1, y0)
- else:
- text_pos = (x0, y1)
- height_ratio = (y1 - y0) / np.sqrt(self.output.height * self.output.width)
- lighter_color = self._change_color_brightness(color, brightness_factor=0.7)
- font_size = (
- np.clip((height_ratio - 0.02) / 0.08 + 1, 1.2, 2)
- * 0.65
- * self._default_font_size
- )
- if label_mode == "a":
- text = self.number_to_string(int(text))
- else:
- text = text
- self.draw_text(
- text,
- text_pos,
- color=lighter_color,
- horizontal_alignment=horiz_align,
- font_size=font_size,
- )
- return str(text)
- @staticmethod
- def number_to_string(n):
- chars = []
- while n:
- n, remainder = divmod(n - 1, 26)
- chars.append(chr(97 + remainder))
- return "".join(reversed(chars))
- def _draw_number_in_mask(
- self, binary_mask, text, color, added_positions=None, label_mode="1"
- ):
- """
- Find proper places to draw text given a binary mask.
- """
- binary_mask = np.pad(binary_mask, ((1, 1), (1, 1)), "constant")
- mask_dt = cv2.distanceTransform(binary_mask, cv2.DIST_L2, 0)
- mask_dt = mask_dt[1:-1, 1:-1]
- max_dist = np.max(mask_dt)
- coords_y, coords_x = np.where(mask_dt == max_dist) # coords is [y, x]
- if label_mode == "a":
- text = self.number_to_string(int(text))
- else:
- text = text
- text_position = (
- coords_x[len(coords_x) // 2] + 2,
- coords_y[len(coords_y) // 2] - 6,
- )
- self.draw_text(
- text,
- text_position,
- added_positions=added_positions,
- binary_mask=binary_mask,
- color=color,
- )
- return str(text), text_position
- # _num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats(binary_mask, 8)
- # if stats[1:, -1].size == 0:
- # return
- # largest_component_id = np.argmax(stats[1:, -1]) + 1
- # # draw text on the largest component, as well as other very large components.
- # for cid in range(1, _num_cc):
- # if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH:
- # # median is more stable than centroid
- # # center = centroids[largest_component_id]
- # center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1]
- # # bottom=np.max((cc_labels == cid).nonzero(), axis=1)[::-1]
- # # center[1]=bottom[1]+2
- # self.draw_text(text, center, color=color)
- def _draw_text_in_mask(self, binary_mask, text, color):
- """
- Find proper places to draw text given a binary mask.
- """
- _num_cc, cc_labels, stats, centroids = cv2.connectedComponentsWithStats(
- binary_mask, 8
- )
- if stats[1:, -1].size == 0:
- return
- largest_component_id = np.argmax(stats[1:, -1]) + 1
- # draw text on the largest component, as well as other very large components.
- for cid in range(1, _num_cc):
- if cid == largest_component_id or stats[cid, -1] > _LARGE_MASK_AREA_THRESH:
- # median is more stable than centroid
- # center = centroids[largest_component_id]
- center = np.median((cc_labels == cid).nonzero(), axis=1)[::-1]
- bottom = np.max((cc_labels == cid).nonzero(), axis=1)[::-1]
- center[1] = bottom[1] + 2
- self.draw_text(text, center, color=color)
- def _convert_keypoints(self, keypoints):
- if isinstance(keypoints, Keypoints):
- keypoints = keypoints.tensor
- keypoints = np.asarray(keypoints)
- return keypoints
- def get_output(self):
- """
- Returns:
- output (VisImage): the image output containing the visualizations added
- to the image.
- """
- return self.output
|