| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456 |
- # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
- # pyre-unsafe
- """
- Transforms and data augmentation for both image + bbox.
- """
- import math
- import random
- from typing import Iterable
- import PIL
- import torch
- import torchvision.transforms as T
- import torchvision.transforms.functional as F
- from sam3.model.box_ops import box_xyxy_to_cxcywh
- from sam3.model.data_misc import interpolate
- def crop(image, target, region):
- cropped_image = F.crop(image, *region)
- target = target.copy()
- i, j, h, w = region
- # should we do something wrt the original size?
- target["size"] = torch.tensor([h, w])
- fields = ["labels", "area", "iscrowd", "positive_map"]
- if "boxes" in target:
- boxes = target["boxes"]
- max_size = torch.as_tensor([w, h], dtype=torch.float32)
- cropped_boxes = boxes - torch.as_tensor([j, i, j, i], dtype=torch.float32)
- cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
- cropped_boxes = cropped_boxes.clamp(min=0)
- area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
- target["boxes"] = cropped_boxes.reshape(-1, 4)
- target["area"] = area
- fields.append("boxes")
- if "input_boxes" in target:
- boxes = target["input_boxes"]
- max_size = torch.as_tensor([w, h], dtype=torch.float32)
- cropped_boxes = boxes - torch.as_tensor([j, i, j, i], dtype=torch.float32)
- cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
- cropped_boxes = cropped_boxes.clamp(min=0)
- target["input_boxes"] = cropped_boxes.reshape(-1, 4)
- if "masks" in target:
- # FIXME should we update the area here if there are no boxes?
- target["masks"] = target["masks"][:, i : i + h, j : j + w]
- fields.append("masks")
- # remove elements for which the boxes or masks that have zero area
- if "boxes" in target or "masks" in target:
- # favor boxes selection when defining which elements to keep
- # this is compatible with previous implementation
- if "boxes" in target:
- cropped_boxes = target["boxes"].reshape(-1, 2, 2)
- keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
- else:
- keep = target["masks"].flatten(1).any(1)
- for field in fields:
- if field in target:
- target[field] = target[field][keep]
- return cropped_image, target
- def hflip(image, target):
- flipped_image = F.hflip(image)
- w, h = image.size
- target = target.copy()
- if "boxes" in target:
- boxes = target["boxes"]
- boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor(
- [-1, 1, -1, 1]
- ) + torch.as_tensor([w, 0, w, 0])
- target["boxes"] = boxes
- if "input_boxes" in target:
- boxes = target["input_boxes"]
- boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor(
- [-1, 1, -1, 1]
- ) + torch.as_tensor([w, 0, w, 0])
- target["input_boxes"] = boxes
- if "masks" in target:
- target["masks"] = target["masks"].flip(-1)
- if "text_input" in target:
- text_input = (
- target["text_input"]
- .replace("left", "[TMP]")
- .replace("right", "left")
- .replace("[TMP]", "right")
- )
- target["text_input"] = text_input
- return flipped_image, target
- def resize(image, target, size, max_size=None, square=False):
- # size can be min_size (scalar) or (w, h) tuple
- def get_size_with_aspect_ratio(image_size, size, max_size=None):
- w, h = image_size
- if max_size is not None:
- min_original_size = float(min((w, h)))
- max_original_size = float(max((w, h)))
- if max_original_size / min_original_size * size > max_size:
- size = int(round(max_size * min_original_size / max_original_size))
- if (w <= h and w == size) or (h <= w and h == size):
- return (h, w)
- if w < h:
- ow = size
- oh = int(size * h / w)
- else:
- oh = size
- ow = int(size * w / h)
- return (oh, ow)
- def get_size(image_size, size, max_size=None):
- if isinstance(size, (list, tuple)):
- return size[::-1]
- else:
- return get_size_with_aspect_ratio(image_size, size, max_size)
- if square:
- size = size, size
- else:
- size = get_size(image.size, size, max_size)
- rescaled_image = F.resize(image, size)
- if target is None:
- return rescaled_image, None
- ratios = tuple(
- float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size)
- )
- ratio_width, ratio_height = ratios
- target = target.copy()
- if "boxes" in target:
- boxes = target["boxes"]
- scaled_boxes = boxes * torch.as_tensor(
- [ratio_width, ratio_height, ratio_width, ratio_height], dtype=torch.float32
- )
- target["boxes"] = scaled_boxes
- if "input_boxes" in target:
- boxes = target["input_boxes"]
- scaled_boxes = boxes * torch.as_tensor(
- [ratio_width, ratio_height, ratio_width, ratio_height], dtype=torch.float32
- )
- target["input_boxes"] = scaled_boxes
- if "area" in target:
- area = target["area"]
- scaled_area = area * (ratio_width * ratio_height)
- target["area"] = scaled_area
- h, w = size
- target["size"] = torch.tensor([h, w])
- if "masks" in target:
- target["masks"] = (
- interpolate(target["masks"][:, None].float(), size, mode="nearest")[:, 0]
- > 0.5
- )
- return rescaled_image, target
- def pad(image, target, padding):
- if len(padding) == 2:
- # assumes that we only pad on the bottom right corners
- padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
- else:
- # left, top, right, bottom
- padded_image = F.pad(image, (padding[0], padding[1], padding[2], padding[3]))
- if target is None:
- return padded_image, None
- target = target.copy()
- w, h = padded_image.size
- # should we do something wrt the original size?
- target["size"] = torch.tensor([h, w])
- if "boxes" in target and len(padding) == 4:
- boxes = target["boxes"]
- boxes = boxes + torch.as_tensor(
- [padding[0], padding[1], padding[0], padding[1]], dtype=torch.float32
- )
- target["boxes"] = boxes
- if "input_boxes" in target and len(padding) == 4:
- boxes = target["input_boxes"]
- boxes = boxes + torch.as_tensor(
- [padding[0], padding[1], padding[0], padding[1]], dtype=torch.float32
- )
- target["input_boxes"] = boxes
- if "masks" in target:
- if len(padding) == 2:
- target["masks"] = torch.nn.functional.pad(
- target["masks"], (0, padding[0], 0, padding[1])
- )
- else:
- target["masks"] = torch.nn.functional.pad(
- target["masks"], (padding[0], padding[2], padding[1], padding[3])
- )
- return padded_image, target
- class RandomCrop:
- def __init__(self, size):
- self.size = size
- def __call__(self, img, target):
- region = T.RandomCrop.get_params(img, self.size)
- return crop(img, target, region)
- class RandomSizeCrop:
- def __init__(self, min_size: int, max_size: int, respect_boxes: bool = False):
- self.min_size = min_size
- self.max_size = max_size
- self.respect_boxes = respect_boxes # if True we can't crop a box out
- def __call__(self, img: PIL.Image.Image, target: dict):
- init_boxes = len(target["boxes"])
- init_boxes_tensor = target["boxes"].clone()
- if self.respect_boxes and init_boxes > 0:
- minW, minH, maxW, maxH = (
- min(img.width, self.min_size),
- min(img.width, self.min_size),
- min(img.width, self.max_size),
- min(img.height, self.max_size),
- )
- minX, minY = (
- target["boxes"][:, 0].max().item() + 10.0,
- target["boxes"][:, 1].max().item() + 10.0,
- )
- minX = min(img.width, minX)
- minY = min(img.height, minY)
- maxX, maxY = (
- target["boxes"][:, 2].min().item() - 10,
- target["boxes"][:, 3].min().item() - 10,
- )
- maxX = max(0.0, maxX)
- maxY = max(0.0, maxY)
- minW = max(minW, minX - maxX)
- minH = max(minH, minY - maxY)
- w = random.uniform(minW, max(minW, maxW))
- h = random.uniform(minH, max(minH, maxH))
- if minX > maxX:
- # i = random.uniform(max(0, minX - w + 1), max(maxX, max(0, minX - w + 1)))
- i = random.uniform(max(0, minX - w), max(maxX, max(0, minX - w)))
- else:
- i = random.uniform(
- max(0, minX - w + 1), max(maxX - 1, max(0, minX - w + 1))
- )
- if minY > maxY:
- # j = random.uniform(max(0, minY - h + 1), max(maxY, max(0, minY - h + 1)))
- j = random.uniform(max(0, minY - h), max(maxY, max(0, minY - h)))
- else:
- j = random.uniform(
- max(0, minY - h + 1), max(maxY - 1, max(0, minY - h + 1))
- )
- result_img, result_target = crop(img, target, [j, i, h, w])
- assert len(result_target["boxes"]) == init_boxes, (
- f"img_w={img.width}\timg_h={img.height}\tminX={minX}\tminY={minY}\tmaxX={maxX}\tmaxY={maxY}\tminW={minW}\tminH={minH}\tmaxW={maxW}\tmaxH={maxH}\tw={w}\th={h}\ti={i}\tj={j}\tinit_boxes={init_boxes_tensor}\tresults={result_target['boxes']}"
- )
- return result_img, result_target
- else:
- w = random.randint(self.min_size, min(img.width, self.max_size))
- h = random.randint(self.min_size, min(img.height, self.max_size))
- region = T.RandomCrop.get_params(img, (h, w))
- result_img, result_target = crop(img, target, region)
- return result_img, result_target
- class CenterCrop:
- def __init__(self, size):
- self.size = size
- def __call__(self, img, target):
- image_width, image_height = img.size
- crop_height, crop_width = self.size
- crop_top = int(round((image_height - crop_height) / 2.0))
- crop_left = int(round((image_width - crop_width) / 2.0))
- return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
- class RandomHorizontalFlip:
- def __init__(self, p=0.5):
- self.p = p
- def __call__(self, img, target):
- if random.random() < self.p:
- return hflip(img, target)
- return img, target
- class RandomResize:
- def __init__(self, sizes, max_size=None, square=False):
- if isinstance(sizes, int):
- sizes = (sizes,)
- assert isinstance(sizes, Iterable)
- self.sizes = list(sizes)
- self.max_size = max_size
- self.square = square
- def __call__(self, img, target=None):
- size = random.choice(self.sizes)
- return resize(img, target, size, self.max_size, square=self.square)
- class RandomPad:
- def __init__(self, max_pad):
- self.max_pad = max_pad
- def __call__(self, img, target):
- pad_x = random.randint(0, self.max_pad)
- pad_y = random.randint(0, self.max_pad)
- return pad(img, target, (pad_x, pad_y))
- class PadToSize:
- def __init__(self, size):
- self.size = size
- def __call__(self, img, target):
- w, h = img.size
- pad_x = self.size - w
- pad_y = self.size - h
- assert pad_x >= 0 and pad_y >= 0
- pad_left = random.randint(0, pad_x)
- pad_right = pad_x - pad_left
- pad_top = random.randint(0, pad_y)
- pad_bottom = pad_y - pad_top
- return pad(img, target, (pad_left, pad_top, pad_right, pad_bottom))
- class Identity:
- def __call__(self, img, target):
- return img, target
- class RandomSelect:
- """
- Randomly selects between transforms1 and transforms2,
- with probability p for transforms1 and (1 - p) for transforms2
- """
- def __init__(self, transforms1=None, transforms2=None, p=0.5):
- self.transforms1 = transforms1 or Identity()
- self.transforms2 = transforms2 or Identity()
- self.p = p
- def __call__(self, img, target):
- if random.random() < self.p:
- return self.transforms1(img, target)
- return self.transforms2(img, target)
- class ToTensor:
- def __call__(self, img, target):
- return F.to_tensor(img), target
- class RandomErasing:
- def __init__(self, *args, **kwargs):
- self.eraser = T.RandomErasing(*args, **kwargs)
- def __call__(self, img, target):
- return self.eraser(img), target
- class Normalize:
- def __init__(self, mean, std):
- self.mean = mean
- self.std = std
- def __call__(self, image, target=None):
- image = F.normalize(image, mean=self.mean, std=self.std)
- if target is None:
- return image, None
- target = target.copy()
- h, w = image.shape[-2:]
- if "boxes" in target:
- boxes = target["boxes"]
- boxes = box_xyxy_to_cxcywh(boxes)
- boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
- target["boxes"] = boxes
- if "input_boxes" in target:
- boxes = target["input_boxes"]
- boxes = box_xyxy_to_cxcywh(boxes)
- boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
- target["input_boxes"] = boxes
- return image, target
- class RemoveDifficult:
- def __init__(self, enabled=False):
- self.remove_difficult = enabled
- def __call__(self, image, target=None):
- if target is None:
- return image, None
- target = target.copy()
- keep = ~target["iscrowd"].to(torch.bool) | (not self.remove_difficult)
- if "boxes" in target:
- target["boxes"] = target["boxes"][keep]
- target["labels"] = target["labels"][keep]
- target["iscrowd"] = target["iscrowd"][keep]
- return image, target
- class Compose:
- def __init__(self, transforms):
- self.transforms = transforms
- def __call__(self, image, target):
- for t in self.transforms:
- image, target = t(image, target)
- return image, target
- def __repr__(self):
- format_string = self.__class__.__name__ + "("
- for t in self.transforms:
- format_string += "\n"
- format_string += " {0}".format(t)
- format_string += "\n)"
- return format_string
- def get_random_resize_scales(size, min_size, rounded):
- stride = 128 if rounded else 32
- min_size = int(stride * math.ceil(min_size / stride))
- scales = list(range(min_size, size + 1, stride))
- return scales
- def get_random_resize_max_size(size, ratio=5 / 3):
- max_size = round(ratio * size)
- return max_size
|