| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235 |
- # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
- # All rights reserved.
- # pyre-unsafe
- # This source code is licensed under the license found in the
- # LICENSE file in the root directory of this source tree.
- import os
- from threading import Thread
- import numpy as np
- import torch
- from PIL import Image
- from tqdm import tqdm
- def _load_img_as_tensor(img_path, image_size):
- img_pil = Image.open(img_path)
- img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size)))
- if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images
- img_np = img_np / 255.0
- else:
- raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}")
- img = torch.from_numpy(img_np).permute(2, 0, 1)
- video_width, video_height = img_pil.size # the original video size
- return img, video_height, video_width
- class AsyncVideoFrameLoader:
- """
- A list of video frames to be load asynchronously without blocking session start.
- """
- def __init__(
- self,
- img_paths,
- image_size,
- offload_video_to_cpu,
- img_mean,
- img_std,
- compute_device,
- ):
- self.img_paths = img_paths
- self.image_size = image_size
- self.offload_video_to_cpu = offload_video_to_cpu
- self.img_mean = img_mean
- self.img_std = img_std
- # items in `self.images` will be loaded asynchronously
- self.images = [None] * len(img_paths)
- # catch and raise any exceptions in the async loading thread
- self.exception = None
- # video_height and video_width be filled when loading the first image
- self.video_height = None
- self.video_width = None
- self.compute_device = compute_device
- # load the first frame to fill video_height and video_width and also
- # to cache it (since it's most likely where the user will click)
- self.__getitem__(0)
- # load the rest of frames asynchronously without blocking the session start
- def _load_frames():
- try:
- for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"):
- self.__getitem__(n)
- except Exception as e:
- self.exception = e
- self.thread = Thread(target=_load_frames, daemon=True)
- self.thread.start()
- def __getitem__(self, index):
- if self.exception is not None:
- raise RuntimeError("Failure in frame loading thread") from self.exception
- img = self.images[index]
- if img is not None:
- return img
- img, video_height, video_width = _load_img_as_tensor(
- self.img_paths[index], self.image_size
- )
- self.video_height = video_height
- self.video_width = video_width
- # normalize by mean and std
- img -= self.img_mean
- img /= self.img_std
- if not self.offload_video_to_cpu:
- img = img.to(self.compute_device, non_blocking=True)
- self.images[index] = img
- return img
- def __len__(self):
- return len(self.images)
- def load_video_frames(
- video_path,
- image_size,
- offload_video_to_cpu,
- img_mean=(0.5, 0.5, 0.5),
- img_std=(0.5, 0.5, 0.5),
- async_loading_frames=False,
- compute_device=torch.device("cuda"),
- ):
- """
- Load the video frames from video_path. The frames are resized to image_size as in
- the model and are loaded to GPU if offload_video_to_cpu=False. This is used by the demo.
- """
- is_bytes = isinstance(video_path, bytes)
- is_str = isinstance(video_path, str)
- is_mp4_path = is_str and os.path.splitext(video_path)[-1] in [".mp4", ".MP4"]
- if is_bytes or is_mp4_path:
- return load_video_frames_from_video_file(
- video_path=video_path,
- image_size=image_size,
- offload_video_to_cpu=offload_video_to_cpu,
- img_mean=img_mean,
- img_std=img_std,
- compute_device=compute_device,
- )
- elif is_str and os.path.isdir(video_path):
- return load_video_frames_from_jpg_images(
- video_path=video_path,
- image_size=image_size,
- offload_video_to_cpu=offload_video_to_cpu,
- img_mean=img_mean,
- img_std=img_std,
- async_loading_frames=async_loading_frames,
- compute_device=compute_device,
- )
- else:
- raise NotImplementedError(
- "Only MP4 video and JPEG folder are supported at this moment"
- )
- def load_video_frames_from_jpg_images(
- video_path,
- image_size,
- offload_video_to_cpu,
- img_mean=(0.5, 0.5, 0.5),
- img_std=(0.5, 0.5, 0.5),
- async_loading_frames=False,
- compute_device=torch.device("cuda"),
- ):
- """
- Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format).
- The frames are resized to image_size x image_size and are loaded to GPU if
- `offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`.
- You can load a frame asynchronously by setting `async_loading_frames` to `True`.
- """
- if isinstance(video_path, str) and os.path.isdir(video_path):
- jpg_folder = video_path
- else:
- raise NotImplementedError(
- "Only JPEG frames are supported at this moment. For video files, you may use "
- "ffmpeg (https://ffmpeg.org/) to extract frames into a folder of JPEG files, such as \n"
- "```\n"
- "ffmpeg -i <your_video>.mp4 -q:v 2 -start_number 0 <output_dir>/'%05d.jpg'\n"
- "```\n"
- "where `-q:v` generates high-quality JPEG frames and `-start_number 0` asks "
- "ffmpeg to start the JPEG file from 00000.jpg."
- )
- frame_names = [
- p
- for p in os.listdir(jpg_folder)
- if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
- ]
- frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
- num_frames = len(frame_names)
- if num_frames == 0:
- raise RuntimeError(f"no images found in {jpg_folder}")
- img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names]
- img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
- img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
- if async_loading_frames:
- lazy_images = AsyncVideoFrameLoader(
- img_paths,
- image_size,
- offload_video_to_cpu,
- img_mean,
- img_std,
- compute_device,
- )
- return lazy_images, lazy_images.video_height, lazy_images.video_width
- images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32)
- for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")):
- images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size)
- if not offload_video_to_cpu:
- images = images.to(compute_device)
- img_mean = img_mean.to(compute_device)
- img_std = img_std.to(compute_device)
- # normalize by mean and std
- images -= img_mean
- images /= img_std
- return images, video_height, video_width
- def load_video_frames_from_video_file(
- video_path,
- image_size,
- offload_video_to_cpu,
- img_mean=(0.5, 0.5, 0.5),
- img_std=(0.5, 0.5, 0.5),
- compute_device=torch.device("cuda"),
- ):
- """Load the video frames from a video file."""
- import decord
- img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
- img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
- # Get the original video height and width
- decord.bridge.set_bridge("torch")
- video_height, video_width, _ = decord.VideoReader(video_path).next().shape
- # Iterate over all frames in the video
- images = []
- for frame in decord.VideoReader(video_path, width=image_size, height=image_size):
- images.append(frame.permute(2, 0, 1))
- images = torch.stack(images, dim=0).float() / 255.0
- if not offload_video_to_cpu:
- images = images.to(compute_device)
- img_mean = img_mean.to(compute_device)
- img_std = img_std.to(compute_device)
- # normalize by mean and std
- images -= img_mean
- images /= img_std
- return images, video_height, video_width
|