| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185 |
- # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
- # pyre-unsafe
- import logging
- import torch
- import torch.nn.functional as F
- from sam3.model.memory import SimpleMaskEncoder
- from sam3.model.sam3_tracker_utils import get_1d_sine_pe, select_closest_cond_frames
- from sam3.sam.mask_decoder import MaskDecoder, MLP
- from sam3.sam.prompt_encoder import PromptEncoder
- from sam3.sam.transformer import TwoWayTransformer
- from sam3.train.data.collator import BatchedDatapoint
- try:
- from timm.layers import trunc_normal_
- except ModuleNotFoundError:
- # compatibility for older timm versions
- from timm.models.layers import trunc_normal_
- # a large negative value as a placeholder score for missing objects
- NO_OBJ_SCORE = -1024.0
- class Sam3TrackerBase(torch.nn.Module):
- def __init__(
- self,
- backbone,
- transformer,
- maskmem_backbone,
- num_maskmem=7, # default 1 input frame + 6 previous frames as in CAE
- image_size=1008,
- backbone_stride=14, # stride of the image backbone output
- # The maximum number of conditioning frames to participate in the memory attention (-1 means no limit; if there are more conditioning frames than this limit,
- # we only cross-attend to the temporally closest `max_cond_frames_in_attn` conditioning frames in the encoder when tracking each frame). This gives the model
- # a temporal locality when handling a large number of annotated frames (since closer frames should be more important) and also avoids GPU OOM.
- max_cond_frames_in_attn=-1,
- # Whether to always keep the first conditioning frame in case we exceed the maximum number of conditioning frames allowed
- keep_first_cond_frame=False,
- # whether to output multiple (3) masks for the first click on initial conditioning frames
- multimask_output_in_sam=False,
- # the minimum and maximum number of clicks to use multimask_output_in_sam (only relevant when `multimask_output_in_sam=True`;
- # default is 1 for both, meaning that only the first click gives multimask output; also note that a box counts as two points)
- multimask_min_pt_num=1,
- multimask_max_pt_num=1,
- # whether to also use multimask output for tracking (not just for the first click on initial conditioning frames; only relevant when `multimask_output_in_sam=True`)
- multimask_output_for_tracking=False,
- # whether to forward image features per frame (as it's being tracked) during evaluation, instead of forwarding image features
- # of all frames at once. This avoids backbone OOM errors on very long videos in evaluation, but could be slightly slower.
- forward_backbone_per_frame_for_eval=False,
- # The memory bank's temporal stride during evaluation (i.e. the `r` parameter in XMem and Cutie; XMem and Cutie use r=5).
- # For r>1, the (self.num_maskmem - 1) non-conditioning memory frames consist of
- # (self.num_maskmem - 2) nearest frames from every r-th frames, plus the last frame.
- memory_temporal_stride_for_eval=1,
- # whether to offload outputs to CPU memory during evaluation, to avoid GPU OOM on very long videos or very large resolutions or too many objects
- # (it's recommended to use `forward_backbone_per_frame_for_eval=True` first before setting this option to True)
- offload_output_to_cpu_for_eval=False,
- # whether to trim the output of past non-conditioning frames (num_maskmem frames before the current frame) during evaluation
- # (this helps save GPU or CPU memory on very long videos for semi-supervised VOS eval, where only the first frame receives prompts)
- trim_past_non_cond_mem_for_eval=False,
- # whether to apply non-overlapping constraints on the object masks in the memory encoder during evaluation (to avoid/alleviate superposing masks)
- non_overlap_masks_for_mem_enc=False,
- # the maximum number of object pointers from other frames in encoder cross attention
- max_obj_ptrs_in_encoder=16,
- # extra arguments used to construct the SAM mask decoder; if not None, it should be a dict of kwargs to be passed into `MaskDecoder` class.
- sam_mask_decoder_extra_args=None,
- # whether to compile all the model compoents
- compile_all_components=False,
- # select the frame with object existence
- use_memory_selection=False,
- # when using memory selection, the threshold to determine if the frame is good
- mf_threshold=0.01,
- ):
- super().__init__()
- # Part 1: the image backbone
- self.backbone = backbone
- self.num_feature_levels = 3
- self.max_obj_ptrs_in_encoder = max_obj_ptrs_in_encoder
- # A conv layer to downsample the GT mask prompt to stride 4 (the same stride as
- # low-res SAM mask logits) and to change its scales from 0~1 to SAM logit scale,
- # so that it can be fed into the SAM mask decoder to generate a pointer.
- self.mask_downsample = torch.nn.Conv2d(1, 1, kernel_size=4, stride=4)
- # Part 2: encoder-only transformer to fuse current frame's visual features
- # with memories from past frames
- assert transformer.decoder is None, "transformer should be encoder-only"
- self.transformer = transformer
- self.hidden_dim = transformer.d_model
- # Part 3: memory encoder for the previous frame's outputs
- self.maskmem_backbone = maskmem_backbone
- self.mem_dim = self.hidden_dim
- if hasattr(self.maskmem_backbone, "out_proj") and hasattr(
- self.maskmem_backbone.out_proj, "weight"
- ):
- # if there is compression of memories along channel dim
- self.mem_dim = self.maskmem_backbone.out_proj.weight.shape[0]
- self.num_maskmem = num_maskmem # Number of memories accessible
- # Temporal encoding of the memories
- self.maskmem_tpos_enc = torch.nn.Parameter(
- torch.zeros(num_maskmem, 1, 1, self.mem_dim)
- )
- trunc_normal_(self.maskmem_tpos_enc, std=0.02)
- # a single token to indicate no memory embedding from previous frames
- self.no_mem_embed = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
- self.no_mem_pos_enc = torch.nn.Parameter(torch.zeros(1, 1, self.hidden_dim))
- trunc_normal_(self.no_mem_embed, std=0.02)
- trunc_normal_(self.no_mem_pos_enc, std=0.02)
- # Apply sigmoid to the output raw mask logits (to turn them from
- # range (-inf, +inf) to range (0, 1)) before feeding them into the memory encoder
- self.sigmoid_scale_for_mem_enc = 20.0
- self.sigmoid_bias_for_mem_enc = -10.0
- self.non_overlap_masks_for_mem_enc = non_overlap_masks_for_mem_enc
- self.memory_temporal_stride_for_eval = memory_temporal_stride_for_eval
- # On frames with mask input, whether to directly output the input mask without
- # using a SAM prompt encoder + mask decoder
- self.multimask_output_in_sam = multimask_output_in_sam
- self.multimask_min_pt_num = multimask_min_pt_num
- self.multimask_max_pt_num = multimask_max_pt_num
- self.multimask_output_for_tracking = multimask_output_for_tracking
- # Part 4: SAM-style prompt encoder (for both mask and point inputs)
- # and SAM-style mask decoder for the final mask output
- self.image_size = image_size
- self.backbone_stride = backbone_stride
- self.low_res_mask_size = self.image_size // self.backbone_stride * 4
- # we resize the mask if it doesn't match `self.input_mask_size` (which is always 4x
- # the low-res mask size, regardless of the actual input image size); this is because
- # `_use_mask_as_output` always downsamples the input masks by 4x
- self.input_mask_size = self.low_res_mask_size * 4
- self.forward_backbone_per_frame_for_eval = forward_backbone_per_frame_for_eval
- self.offload_output_to_cpu_for_eval = offload_output_to_cpu_for_eval
- self.trim_past_non_cond_mem_for_eval = trim_past_non_cond_mem_for_eval
- self.sam_mask_decoder_extra_args = sam_mask_decoder_extra_args
- self.no_obj_ptr = torch.nn.Parameter(torch.zeros(1, self.hidden_dim))
- trunc_normal_(self.no_obj_ptr, std=0.02)
- self.no_obj_embed_spatial = torch.nn.Parameter(torch.zeros(1, self.mem_dim))
- trunc_normal_(self.no_obj_embed_spatial, std=0.02)
- self._build_sam_heads()
- self.max_cond_frames_in_attn = max_cond_frames_in_attn
- self.keep_first_cond_frame = keep_first_cond_frame
- # Use frame filtering according to SAM2Long
- self.use_memory_selection = use_memory_selection
- self.mf_threshold = mf_threshold
- # Compile all components of the model
- self.compile_all_components = compile_all_components
- if self.compile_all_components:
- self._compile_all_components()
- @property
- def device(self):
- return next(self.parameters()).device
- def _get_tpos_enc(self, rel_pos_list, device, max_abs_pos=None, dummy=False):
- if dummy:
- return torch.zeros(len(rel_pos_list), self.mem_dim, device=device)
- t_diff_max = max_abs_pos - 1 if max_abs_pos is not None else 1
- pos_enc = (
- torch.tensor(rel_pos_list).pin_memory().to(device=device, non_blocking=True)
- / t_diff_max
- )
- tpos_dim = self.hidden_dim
- pos_enc = get_1d_sine_pe(pos_enc, dim=tpos_dim)
- pos_enc = self.obj_ptr_tpos_proj(pos_enc)
- return pos_enc
- def _build_sam_heads(self):
- """Build SAM-style prompt encoder and mask decoder."""
- self.sam_prompt_embed_dim = self.hidden_dim
- self.sam_image_embedding_size = self.image_size // self.backbone_stride
- # build PromptEncoder and MaskDecoder from SAM
- # (their hyperparameters like `mask_in_chans=16` are from SAM code)
- self.sam_prompt_encoder = PromptEncoder(
- embed_dim=self.sam_prompt_embed_dim,
- image_embedding_size=(
- self.sam_image_embedding_size,
- self.sam_image_embedding_size,
- ),
- input_image_size=(self.image_size, self.image_size),
- mask_in_chans=16,
- )
- self.sam_mask_decoder = MaskDecoder(
- num_multimask_outputs=3,
- transformer=TwoWayTransformer(
- depth=2,
- embedding_dim=self.sam_prompt_embed_dim,
- mlp_dim=2048,
- num_heads=8,
- ),
- transformer_dim=self.sam_prompt_embed_dim,
- iou_head_depth=3,
- iou_head_hidden_dim=256,
- use_high_res_features=True,
- iou_prediction_use_sigmoid=True,
- pred_obj_scores=True,
- pred_obj_scores_mlp=True,
- use_multimask_token_for_obj_ptr=True,
- **(self.sam_mask_decoder_extra_args or {}),
- )
- # a linear projection on SAM output tokens to turn them into object pointers
- self.obj_ptr_proj = torch.nn.Linear(self.hidden_dim, self.hidden_dim)
- self.obj_ptr_proj = MLP(self.hidden_dim, self.hidden_dim, self.hidden_dim, 3)
- # a linear projection on temporal positional encoding in object pointers to
- # avoid potential interference with spatial positional encoding
- self.obj_ptr_tpos_proj = torch.nn.Linear(self.hidden_dim, self.mem_dim)
- def _forward_sam_heads(
- self,
- backbone_features,
- point_inputs=None,
- mask_inputs=None,
- high_res_features=None,
- multimask_output=False,
- gt_masks=None,
- ):
- """
- Forward SAM prompt encoders and mask heads.
- Inputs:
- - backbone_features: image features of [B, C, H, W] shape
- - point_inputs: a dictionary with "point_coords" and "point_labels", where
- 1) "point_coords" has [B, P, 2] shape and float32 dtype and contains the
- absolute pixel-unit coordinate in (x, y) format of the P input points
- 2) "point_labels" has shape [B, P] and int32 dtype, where 1 means
- positive clicks, 0 means negative clicks, and -1 means padding
- - mask_inputs: a mask of [B, 1, H*16, W*16] shape, float or bool, with the
- same spatial size as the image.
- - high_res_features: either 1) None or 2) or a list of length 2 containing
- two feature maps of [B, C, 4*H, 4*W] and [B, C, 2*H, 2*W] shapes respectively,
- which will be used as high-resolution feature maps for SAM decoder.
- - multimask_output: if it's True, we output 3 candidate masks and their 3
- corresponding IoU estimates, and if it's False, we output only 1 mask and
- its corresponding IoU estimate.
- Outputs:
- - low_res_multimasks: [B, M, H*4, W*4] shape (where M = 3 if
- `multimask_output=True` and M = 1 if `multimask_output=False`), the SAM
- output mask logits (before sigmoid) for the low-resolution masks, with 4x
- the resolution (1/4 stride) of the input backbone_features.
- - high_res_multimasks: [B, M, H*16, W*16] shape (where M = 3
- if `multimask_output=True` and M = 1 if `multimask_output=False`),
- upsampled from the low-resolution masks, with shape size as the image
- (stride is 1 pixel).
- - ious, [B, M] shape, where (where M = 3 if `multimask_output=True` and M = 1
- if `multimask_output=False`), the estimated IoU of each output mask.
- - low_res_masks: [B, 1, H*4, W*4] shape, the best mask in `low_res_multimasks`.
- If `multimask_output=True`, it's the mask with the highest IoU estimate.
- If `multimask_output=False`, it's the same as `low_res_multimasks`.
- - high_res_masks: [B, 1, H*16, W*16] shape, the best mask in `high_res_multimasks`.
- If `multimask_output=True`, it's the mask with the highest IoU estimate.
- If `multimask_output=False`, it's the same as `high_res_multimasks`.
- - obj_ptr: [B, C] shape, the object pointer vector for the output mask, extracted
- based on the output token from the SAM mask decoder.
- """
- B = backbone_features.size(0)
- device = backbone_features.device
- assert backbone_features.size(1) == self.sam_prompt_embed_dim
- assert backbone_features.size(2) == self.sam_image_embedding_size
- assert backbone_features.size(3) == self.sam_image_embedding_size
- # a) Handle point prompts
- if point_inputs is not None:
- sam_point_coords = point_inputs["point_coords"]
- sam_point_labels = point_inputs["point_labels"]
- assert sam_point_coords.size(0) == B and sam_point_labels.size(0) == B
- else:
- # If no points are provide, pad with an empty point (with label -1)
- sam_point_coords = torch.zeros(B, 1, 2, device=device)
- sam_point_labels = -torch.ones(B, 1, dtype=torch.int32, device=device)
- # b) Handle mask prompts
- if mask_inputs is not None:
- # If mask_inputs is provided, downsize it into low-res mask input if needed
- # and feed it as a dense mask prompt into the SAM mask encoder
- assert len(mask_inputs.shape) == 4 and mask_inputs.shape[:2] == (B, 1)
- if mask_inputs.shape[-2:] != self.sam_prompt_encoder.mask_input_size:
- sam_mask_prompt = F.interpolate(
- mask_inputs.float(),
- size=self.sam_prompt_encoder.mask_input_size,
- align_corners=False,
- mode="bilinear",
- antialias=True, # use antialias for downsampling
- )
- else:
- sam_mask_prompt = mask_inputs
- else:
- # Otherwise, simply feed None (and SAM's prompt encoder will add
- # a learned `no_mask_embed` to indicate no mask input in this case).
- sam_mask_prompt = None
- sparse_embeddings, dense_embeddings = self.sam_prompt_encoder(
- points=(sam_point_coords, sam_point_labels),
- boxes=None,
- masks=sam_mask_prompt,
- )
- # Clone image_pe and the outputs of sam_prompt_encoder
- # to enable compilation
- sparse_embeddings = self._maybe_clone(sparse_embeddings)
- dense_embeddings = self._maybe_clone(dense_embeddings)
- image_pe = self._maybe_clone(self.sam_prompt_encoder.get_dense_pe())
- with torch.profiler.record_function("sam_mask_decoder"):
- (
- low_res_multimasks,
- ious,
- sam_output_tokens,
- object_score_logits,
- ) = self.sam_mask_decoder(
- image_embeddings=backbone_features,
- image_pe=image_pe,
- sparse_prompt_embeddings=sparse_embeddings,
- dense_prompt_embeddings=dense_embeddings,
- multimask_output=multimask_output,
- repeat_image=False, # the image is already batched
- high_res_features=high_res_features,
- )
- # Clone the output of sam_mask_decoder
- # to enable compilation
- low_res_multimasks = self._maybe_clone(low_res_multimasks)
- ious = self._maybe_clone(ious)
- sam_output_tokens = self._maybe_clone(sam_output_tokens)
- object_score_logits = self._maybe_clone(object_score_logits)
- if self.training and self.teacher_force_obj_scores_for_mem:
- # we use gt to detect if there is an object or not to
- # select no obj ptr and use an empty mask for spatial memory
- is_obj_appearing = torch.any(gt_masks.float().flatten(1) > 0, dim=1)
- is_obj_appearing = is_obj_appearing[..., None]
- else:
- is_obj_appearing = object_score_logits > 0
- # Mask used for spatial memories is always a *hard* choice between obj and no obj,
- # consistent with the actual mask prediction
- low_res_multimasks = torch.where(
- is_obj_appearing[:, None, None],
- low_res_multimasks,
- NO_OBJ_SCORE,
- )
- # convert masks from possibly bfloat16 (or float16) to float32
- # (older PyTorch versions before 2.1 don't support `interpolate` on bf16)
- low_res_multimasks = low_res_multimasks.float()
- high_res_multimasks = F.interpolate(
- low_res_multimasks,
- size=(self.image_size, self.image_size),
- mode="bilinear",
- align_corners=False,
- )
- sam_output_token = sam_output_tokens[:, 0]
- if multimask_output:
- # take the best mask prediction (with the highest IoU estimation)
- best_iou_inds = torch.argmax(ious, dim=-1)
- batch_inds = torch.arange(B, device=device)
- low_res_masks = low_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
- high_res_masks = high_res_multimasks[batch_inds, best_iou_inds].unsqueeze(1)
- if sam_output_tokens.size(1) > 1:
- sam_output_token = sam_output_tokens[batch_inds, best_iou_inds]
- else:
- low_res_masks, high_res_masks = low_res_multimasks, high_res_multimasks
- # Extract object pointer from the SAM output token (with occlusion handling)
- obj_ptr = self.obj_ptr_proj(sam_output_token)
- lambda_is_obj_appearing = is_obj_appearing.float()
- obj_ptr = lambda_is_obj_appearing * obj_ptr
- obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
- return (
- low_res_multimasks,
- high_res_multimasks,
- ious,
- low_res_masks,
- high_res_masks,
- obj_ptr,
- object_score_logits,
- )
- def _use_mask_as_output(self, backbone_features, high_res_features, mask_inputs):
- """
- Directly turn binary `mask_inputs` into a output mask logits without using SAM.
- (same input and output shapes as in _forward_sam_heads above).
- """
- # Use -10/+10 as logits for neg/pos pixels (very close to 0/1 in prob after sigmoid).
- out_scale, out_bias = 20.0, -10.0 # sigmoid(-10.0)=4.5398e-05
- mask_inputs_float = mask_inputs.float()
- high_res_masks = mask_inputs_float * out_scale + out_bias
- low_res_masks = F.interpolate(
- high_res_masks,
- size=(
- high_res_masks.size(-2) // self.backbone_stride * 4,
- high_res_masks.size(-1) // self.backbone_stride * 4,
- ),
- align_corners=False,
- mode="bilinear",
- antialias=True, # use antialias for downsampling
- )
- # a dummy IoU prediction of all 1's under mask input
- ious = mask_inputs.new_ones(mask_inputs.size(0), 1).float()
- # produce an object pointer using the SAM decoder from the mask input
- _, _, _, _, _, obj_ptr, _ = self._forward_sam_heads(
- backbone_features=backbone_features,
- mask_inputs=self.mask_downsample(mask_inputs_float),
- high_res_features=high_res_features,
- gt_masks=mask_inputs,
- )
- # In this method, we are treating mask_input as output, e.g. using it directly to create spatial mem;
- # Below, we follow the same design axiom to use mask_input to decide if obj appears or not instead of relying
- # on the object_scores from the SAM decoder.
- is_obj_appearing = torch.any(mask_inputs.flatten(1).float() > 0.0, dim=1)
- is_obj_appearing = is_obj_appearing[..., None]
- lambda_is_obj_appearing = is_obj_appearing.float()
- object_score_logits = out_scale * lambda_is_obj_appearing + out_bias
- obj_ptr = lambda_is_obj_appearing * obj_ptr
- obj_ptr = obj_ptr + (1 - lambda_is_obj_appearing) * self.no_obj_ptr
- return (
- low_res_masks,
- high_res_masks,
- ious,
- low_res_masks,
- high_res_masks,
- obj_ptr,
- object_score_logits,
- )
- def forward(self, input: BatchedDatapoint, is_inference=False):
- raise NotImplementedError(
- "Please use the corresponding methods in SAM3VideoPredictor for inference."
- "See examples/sam3_dense_video_tracking.ipynb for an inference example."
- )
- def forward_image(self, img_batch):
- """Get the image feature on the input batch."""
- # This line is the only change from the parent class
- # to use the SAM3 backbone instead of the SAM2 backbone.
- backbone_out = self.backbone.forward_image(img_batch)["sam2_backbone_out"]
- # precompute projected level 0 and level 1 features in SAM decoder
- # to avoid running it again on every SAM click
- backbone_out["backbone_fpn"][0] = self.sam_mask_decoder.conv_s0(
- backbone_out["backbone_fpn"][0]
- )
- backbone_out["backbone_fpn"][1] = self.sam_mask_decoder.conv_s1(
- backbone_out["backbone_fpn"][1]
- )
- # Clone to help torch.compile
- for i in range(len(backbone_out["backbone_fpn"])):
- backbone_out["backbone_fpn"][i] = self._maybe_clone(
- backbone_out["backbone_fpn"][i]
- )
- backbone_out["vision_pos_enc"][i] = self._maybe_clone(
- backbone_out["vision_pos_enc"][i]
- )
- return backbone_out
- def _prepare_backbone_features(self, backbone_out):
- """Prepare and flatten visual features (same as in MDETR_API model)."""
- backbone_out = backbone_out.copy()
- assert len(backbone_out["backbone_fpn"]) == len(backbone_out["vision_pos_enc"])
- assert len(backbone_out["backbone_fpn"]) >= self.num_feature_levels
- feature_maps = backbone_out["backbone_fpn"][-self.num_feature_levels :]
- vision_pos_embeds = backbone_out["vision_pos_enc"][-self.num_feature_levels :]
- feat_sizes = [(x.shape[-2], x.shape[-1]) for x in vision_pos_embeds]
- # flatten NxCxHxW to HWxNxC
- vision_feats = [x.flatten(2).permute(2, 0, 1) for x in feature_maps]
- vision_pos_embeds = [x.flatten(2).permute(2, 0, 1) for x in vision_pos_embeds]
- return backbone_out, vision_feats, vision_pos_embeds, feat_sizes
- def _prepare_backbone_features_per_frame(self, img_batch, img_ids):
- """Compute the image backbone features on the fly for the given img_ids."""
- # Only forward backbone on unique image ids to avoid repeatitive computation
- # (if `img_ids` has only one element, it's already unique so we skip this step).
- if img_ids.numel() > 1:
- unique_img_ids, inv_ids = torch.unique(img_ids, return_inverse=True)
- else:
- unique_img_ids, inv_ids = img_ids, None
- # Compute the image features on those unique image ids
- image = img_batch[unique_img_ids]
- backbone_out = self.forward_image(image)
- (
- _,
- vision_feats,
- vision_pos_embeds,
- feat_sizes,
- ) = self._prepare_backbone_features(backbone_out)
- # Inverse-map image features for `unique_img_ids` to the final image features
- # for the original input `img_ids`.
- if inv_ids is not None:
- image = image[inv_ids]
- vision_feats = [x[:, inv_ids] for x in vision_feats]
- vision_pos_embeds = [x[:, inv_ids] for x in vision_pos_embeds]
- return image, vision_feats, vision_pos_embeds, feat_sizes
- def cal_mem_score(self, object_score_logits, iou_score):
- object_score_norm = torch.where(
- object_score_logits > 0,
- object_score_logits.sigmoid() * 2 - 1, ## rescale to [0, 1]
- torch.zeros_like(object_score_logits),
- )
- score_per_frame = (object_score_norm * iou_score).mean()
- return score_per_frame
- def frame_filter(self, output_dict, track_in_reverse, frame_idx, num_frames, r):
- if (frame_idx == 0 and not track_in_reverse) or (
- frame_idx == num_frames - 1 and track_in_reverse
- ):
- return []
- max_num = min(
- num_frames, self.max_obj_ptrs_in_encoder
- ) ## maximum number of pointer memory frames to consider
- if not track_in_reverse:
- start = frame_idx - 1
- end = 0
- step = -r
- must_include = frame_idx - 1
- else:
- start = frame_idx + 1
- end = num_frames
- step = r
- must_include = frame_idx + 1
- valid_indices = []
- for i in range(start, end, step):
- if (
- i not in output_dict["non_cond_frame_outputs"]
- or "eff_iou_score" not in output_dict["non_cond_frame_outputs"][i]
- ):
- continue
- score_per_frame = output_dict["non_cond_frame_outputs"][i]["eff_iou_score"]
- if score_per_frame > self.mf_threshold: # threshold
- valid_indices.insert(0, i)
- if len(valid_indices) >= max_num - 1:
- break
- if must_include not in valid_indices:
- valid_indices.append(must_include)
- return valid_indices
- def _prepare_memory_conditioned_features(
- self,
- frame_idx,
- is_init_cond_frame,
- current_vision_feats,
- current_vision_pos_embeds,
- feat_sizes,
- output_dict,
- num_frames,
- track_in_reverse=False, # tracking in reverse time order (for demo usage)
- use_prev_mem_frame=True,
- ):
- """Fuse the current frame's visual feature map with previous memory."""
- B = current_vision_feats[-1].size(1) # batch size on this frame
- C = self.hidden_dim
- H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
- device = current_vision_feats[-1].device
- # The case of `self.num_maskmem == 0` below is primarily used for reproducing SAM on images.
- # In this case, we skip the fusion with any memory.
- if self.num_maskmem == 0: # Disable memory and skip fusion
- pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
- return pix_feat
- num_obj_ptr_tokens = 0
- tpos_sign_mul = -1 if track_in_reverse else 1
- # Step 1: condition the visual features of the current frame on previous memories
- if not is_init_cond_frame and use_prev_mem_frame:
- # Retrieve the memories encoded with the maskmem backbone
- to_cat_prompt, to_cat_prompt_mask, to_cat_prompt_pos_embed = [], [], []
- # Add conditioning frames's output first (all cond frames have t_pos=0 for
- # when getting temporal positional embedding below)
- assert len(output_dict["cond_frame_outputs"]) > 0
- # Select a maximum number of temporally closest cond frames for cross attention
- cond_outputs = output_dict["cond_frame_outputs"]
- selected_cond_outputs, unselected_cond_outputs = select_closest_cond_frames(
- frame_idx,
- cond_outputs,
- self.max_cond_frames_in_attn,
- keep_first_cond_frame=self.keep_first_cond_frame,
- )
- t_pos_and_prevs = [
- ((frame_idx - t) * tpos_sign_mul, out, True)
- for t, out in selected_cond_outputs.items()
- ]
- # Add last (self.num_maskmem - 1) frames before current frame for non-conditioning memory
- # the earliest one has t_pos=1 and the latest one has t_pos=self.num_maskmem-1
- # We also allow taking the memory frame non-consecutively (with r>1), in which case
- # we take (self.num_maskmem - 2) frames among every r-th frames plus the last frame.
- r = 1 if self.training else self.memory_temporal_stride_for_eval
- if self.use_memory_selection:
- valid_indices = self.frame_filter(
- output_dict, track_in_reverse, frame_idx, num_frames, r
- )
- for t_pos in range(1, self.num_maskmem):
- t_rel = self.num_maskmem - t_pos # how many frames before current frame
- if self.use_memory_selection:
- if t_rel > len(valid_indices):
- continue
- prev_frame_idx = valid_indices[-t_rel]
- else:
- if t_rel == 1:
- # for t_rel == 1, we take the last frame (regardless of r)
- if not track_in_reverse:
- # the frame immediately before this frame (i.e. frame_idx - 1)
- prev_frame_idx = frame_idx - t_rel
- else:
- # the frame immediately after this frame (i.e. frame_idx + 1)
- prev_frame_idx = frame_idx + t_rel
- else:
- # for t_rel >= 2, we take the memory frame from every r-th frames
- if not track_in_reverse:
- # first find the nearest frame among every r-th frames before this frame
- # for r=1, this would be (frame_idx - 2)
- prev_frame_idx = ((frame_idx - 2) // r) * r
- # then seek further among every r-th frames
- prev_frame_idx = prev_frame_idx - (t_rel - 2) * r
- else:
- # first find the nearest frame among every r-th frames after this frame
- # for r=1, this would be (frame_idx + 2)
- prev_frame_idx = -(-(frame_idx + 2) // r) * r
- # then seek further among every r-th frames
- prev_frame_idx = prev_frame_idx + (t_rel - 2) * r
- out = output_dict["non_cond_frame_outputs"].get(prev_frame_idx, None)
- if out is None:
- # If an unselected conditioning frame is among the last (self.num_maskmem - 1)
- # frames, we still attend to it as if it's a non-conditioning frame.
- out = unselected_cond_outputs.get(prev_frame_idx, None)
- t_pos_and_prevs.append((t_pos, out, False))
- for t_pos, prev, is_selected_cond_frame in t_pos_and_prevs:
- if prev is None:
- continue # skip padding frames
- # "maskmem_features" might have been offloaded to CPU in demo use cases,
- # so we load it back to GPU (it's a no-op if it's already on GPU).
- feats = prev["maskmem_features"].cuda(non_blocking=True)
- seq_len = feats.shape[-2] * feats.shape[-1]
- to_cat_prompt.append(feats.flatten(2).permute(2, 0, 1))
- to_cat_prompt_mask.append(
- torch.zeros(B, seq_len, device=device, dtype=bool)
- )
- # Spatial positional encoding (it might have been offloaded to CPU in eval)
- maskmem_enc = prev["maskmem_pos_enc"][-1].cuda()
- maskmem_enc = maskmem_enc.flatten(2).permute(2, 0, 1)
- if (
- is_selected_cond_frame
- and getattr(self, "cond_frame_spatial_embedding", None) is not None
- ):
- # add a spatial embedding for the conditioning frame
- maskmem_enc = maskmem_enc + self.cond_frame_spatial_embedding
- # Temporal positional encoding
- t = t_pos if not is_selected_cond_frame else 0
- maskmem_enc = (
- maskmem_enc + self.maskmem_tpos_enc[self.num_maskmem - t - 1]
- )
- to_cat_prompt_pos_embed.append(maskmem_enc)
- # Construct the list of past object pointers
- # Optionally, select only a subset of spatial memory frames during trainining
- if (
- self.training
- and self.prob_to_dropout_spatial_mem > 0
- and self.rng.random() < self.prob_to_dropout_spatial_mem
- ):
- num_spatial_mem_keep = self.rng.integers(len(to_cat_prompt) + 1)
- keep = self.rng.choice(
- range(len(to_cat_prompt)), num_spatial_mem_keep, replace=False
- ).tolist()
- to_cat_prompt = [to_cat_prompt[i] for i in keep]
- to_cat_prompt_mask = [to_cat_prompt_mask[i] for i in keep]
- to_cat_prompt_pos_embed = [to_cat_prompt_pos_embed[i] for i in keep]
- max_obj_ptrs_in_encoder = min(num_frames, self.max_obj_ptrs_in_encoder)
- # First add those object pointers from selected conditioning frames
- # (optionally, only include object pointers in the past during evaluation)
- if not self.training:
- ptr_cond_outputs = {
- t: out
- for t, out in selected_cond_outputs.items()
- if (t >= frame_idx if track_in_reverse else t <= frame_idx)
- }
- else:
- ptr_cond_outputs = selected_cond_outputs
- pos_and_ptrs = [
- # Temporal pos encoding contains how far away each pointer is from current frame
- (
- (frame_idx - t) * tpos_sign_mul,
- out["obj_ptr"],
- True, # is_selected_cond_frame
- )
- for t, out in ptr_cond_outputs.items()
- ]
- # Add up to (max_obj_ptrs_in_encoder - 1) non-conditioning frames before current frame
- for t_diff in range(1, max_obj_ptrs_in_encoder):
- if not self.use_memory_selection:
- t = frame_idx + t_diff if track_in_reverse else frame_idx - t_diff
- if t < 0 or (num_frames is not None and t >= num_frames):
- break
- else:
- if -t_diff <= -len(valid_indices):
- break
- t = valid_indices[-t_diff]
- out = output_dict["non_cond_frame_outputs"].get(
- t, unselected_cond_outputs.get(t, None)
- )
- if out is not None:
- pos_and_ptrs.append((t_diff, out["obj_ptr"], False))
- # If we have at least one object pointer, add them to the across attention
- if len(pos_and_ptrs) > 0:
- pos_list, ptrs_list, is_selected_cond_frame_list = zip(*pos_and_ptrs)
- # stack object pointers along dim=0 into [ptr_seq_len, B, C] shape
- obj_ptrs = torch.stack(ptrs_list, dim=0)
- if getattr(self, "cond_frame_obj_ptr_embedding", None) is not None:
- obj_ptrs = (
- obj_ptrs
- + self.cond_frame_obj_ptr_embedding
- * torch.tensor(is_selected_cond_frame_list, device=device)[
- ..., None, None
- ].float()
- )
- # a temporal positional embedding based on how far each object pointer is from
- # the current frame (sine embedding normalized by the max pointer num).
- obj_pos = self._get_tpos_enc(
- pos_list,
- max_abs_pos=max_obj_ptrs_in_encoder,
- device=device,
- )
- # expand to batch size
- obj_pos = obj_pos.unsqueeze(1).expand(-1, B, -1)
- if self.mem_dim < C:
- # split a pointer into (C // self.mem_dim) tokens for self.mem_dim < C
- obj_ptrs = obj_ptrs.reshape(-1, B, C // self.mem_dim, self.mem_dim)
- obj_ptrs = obj_ptrs.permute(0, 2, 1, 3).flatten(0, 1)
- obj_pos = obj_pos.repeat_interleave(C // self.mem_dim, dim=0)
- to_cat_prompt.append(obj_ptrs)
- to_cat_prompt_mask.append(None) # "to_cat_prompt_mask" is not used
- to_cat_prompt_pos_embed.append(obj_pos)
- num_obj_ptr_tokens = obj_ptrs.shape[0]
- else:
- num_obj_ptr_tokens = 0
- else:
- # directly add no-mem embedding (instead of using the transformer encoder)
- pix_feat_with_mem = current_vision_feats[-1] + self.no_mem_embed
- pix_feat_with_mem = pix_feat_with_mem.permute(1, 2, 0).view(B, C, H, W)
- return pix_feat_with_mem
- # Use a dummy token on the first grame (to avoid emtpy memory input to tranformer encoder)
- to_cat_prompt = [self.no_mem_embed.expand(1, B, self.mem_dim)]
- to_cat_prompt_mask = [torch.zeros(B, 1, device=device, dtype=bool)]
- to_cat_prompt_pos_embed = [self.no_mem_pos_enc.expand(1, B, self.mem_dim)]
- # Step 2: Concatenate the memories and forward through the transformer encoder
- prompt = torch.cat(to_cat_prompt, dim=0)
- prompt_mask = None # For now, we always masks are zeros anyways
- prompt_pos_embed = torch.cat(to_cat_prompt_pos_embed, dim=0)
- encoder_out = self.transformer.encoder(
- src=current_vision_feats,
- src_key_padding_mask=[None],
- src_pos=current_vision_pos_embeds,
- prompt=prompt,
- prompt_pos=prompt_pos_embed,
- prompt_key_padding_mask=prompt_mask,
- feat_sizes=feat_sizes,
- num_obj_ptr_tokens=num_obj_ptr_tokens,
- )
- # reshape the output (HW)BC => BCHW
- pix_feat_with_mem = encoder_out["memory"].permute(1, 2, 0).view(B, C, H, W)
- return pix_feat_with_mem
- def _encode_new_memory(
- self,
- image,
- current_vision_feats,
- feat_sizes,
- pred_masks_high_res,
- object_score_logits,
- is_mask_from_pts,
- output_dict=None,
- is_init_cond_frame=False,
- ):
- """Encode the current image and its prediction into a memory feature."""
- B = current_vision_feats[-1].size(1) # batch size on this frame
- C = self.hidden_dim
- H, W = feat_sizes[-1] # top-level (lowest-resolution) feature size
- # top-level feature, (HW)BC => BCHW
- pix_feat = current_vision_feats[-1].permute(1, 2, 0).view(B, C, H, W)
- if self.non_overlap_masks_for_mem_enc and not self.training:
- # optionally, apply non-overlapping constraints to the masks (it's applied
- # in the batch dimension and should only be used during eval, where all
- # the objects come from the same video under batch size 1).
- pred_masks_high_res = self._apply_non_overlapping_constraints(
- pred_masks_high_res
- )
- # scale the raw mask logits with a temperature before applying sigmoid
- if is_mask_from_pts and not self.training:
- mask_for_mem = (pred_masks_high_res > 0).float()
- else:
- # apply sigmoid on the raw mask logits to turn them into range (0, 1)
- mask_for_mem = torch.sigmoid(pred_masks_high_res)
- # apply scale and bias terms to the sigmoid probabilities
- if self.sigmoid_scale_for_mem_enc != 1.0:
- mask_for_mem = mask_for_mem * self.sigmoid_scale_for_mem_enc
- if self.sigmoid_bias_for_mem_enc != 0.0:
- mask_for_mem = mask_for_mem + self.sigmoid_bias_for_mem_enc
- if isinstance(self.maskmem_backbone, SimpleMaskEncoder):
- pix_feat = pix_feat.view_as(pix_feat)
- maskmem_out = self.maskmem_backbone(
- pix_feat, mask_for_mem, skip_mask_sigmoid=True
- )
- else:
- maskmem_out = self.maskmem_backbone(image, pix_feat, mask_for_mem)
- # Clone the feats and pos_enc to enable compilation
- maskmem_features = self._maybe_clone(maskmem_out["vision_features"])
- maskmem_pos_enc = [self._maybe_clone(m) for m in maskmem_out["vision_pos_enc"]]
- # add a no-object embedding to the spatial memory to indicate that the frame
- # is predicted to be occluded (i.e. no object is appearing in the frame)
- is_obj_appearing = (object_score_logits > 0).float()
- maskmem_features += (
- 1 - is_obj_appearing[..., None, None]
- ) * self.no_obj_embed_spatial[..., None, None].expand(*maskmem_features.shape)
- return maskmem_features, maskmem_pos_enc
- def forward_tracking(self, backbone_out, input, return_dict=False):
- """Forward video tracking on each frame (and sample correction clicks)."""
- img_feats_already_computed = backbone_out["backbone_fpn"] is not None
- if img_feats_already_computed:
- # Prepare the backbone features
- # - vision_feats and vision_pos_embeds are in (HW)BC format
- (
- _,
- vision_feats,
- vision_pos_embeds,
- feat_sizes,
- ) = self._prepare_backbone_features(backbone_out)
- # Starting the stage loop
- num_frames = backbone_out["num_frames"]
- init_cond_frames = backbone_out["init_cond_frames"]
- frames_to_add_correction_pt = backbone_out["frames_to_add_correction_pt"]
- # first process all the initial conditioning frames to encode them as memory,
- # and then conditioning on them to track the remaining frames
- processing_order = init_cond_frames + backbone_out["frames_not_in_init_cond"]
- output_dict = {
- "cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
- "non_cond_frame_outputs": {}, # dict containing {frame_idx: <out>}
- }
- for stage_id in processing_order:
- # Get the image features for the current frames
- img_ids = input.find_inputs[stage_id].img_ids
- if img_feats_already_computed:
- # Retrieve image features according to img_ids (if they are already computed).
- current_image = input.img_batch[img_ids]
- current_vision_feats = [x[:, img_ids] for x in vision_feats]
- current_vision_pos_embeds = [x[:, img_ids] for x in vision_pos_embeds]
- else:
- # Otherwise, compute the image features on the fly for the given img_ids
- # (this might be used for evaluation on long videos to avoid backbone OOM).
- (
- current_image,
- current_vision_feats,
- current_vision_pos_embeds,
- feat_sizes,
- ) = self._prepare_backbone_features_per_frame(input.img_batch, img_ids)
- # Get output masks based on this frame's prompts and previous memory
- current_out = self.track_step(
- frame_idx=stage_id,
- is_init_cond_frame=stage_id in init_cond_frames,
- current_vision_feats=current_vision_feats,
- current_vision_pos_embeds=current_vision_pos_embeds,
- feat_sizes=feat_sizes,
- image=current_image,
- point_inputs=backbone_out["point_inputs_per_frame"].get(stage_id, None),
- mask_inputs=backbone_out["mask_inputs_per_frame"].get(stage_id, None),
- output_dict=output_dict,
- num_frames=num_frames,
- )
- # Append the output, depending on whether it's a conditioning frame
- add_output_as_cond_frame = stage_id in init_cond_frames or (
- self.add_all_frames_to_correct_as_cond
- and stage_id in frames_to_add_correction_pt
- )
- if add_output_as_cond_frame:
- output_dict["cond_frame_outputs"][stage_id] = current_out
- else:
- output_dict["non_cond_frame_outputs"][stage_id] = current_out
- if return_dict:
- return output_dict
- # turn `output_dict` into a list for loss function
- all_frame_outputs = {}
- all_frame_outputs.update(output_dict["cond_frame_outputs"])
- all_frame_outputs.update(output_dict["non_cond_frame_outputs"])
- all_frame_outputs = [all_frame_outputs[t] for t in range(num_frames)]
- # Make DDP happy with activation checkpointing by removing unused keys
- all_frame_outputs = [
- {k: v for k, v in d.items() if k != "obj_ptr"} for d in all_frame_outputs
- ]
- return all_frame_outputs
- def track_step(
- self,
- frame_idx,
- is_init_cond_frame,
- current_vision_feats,
- current_vision_pos_embeds,
- feat_sizes,
- image,
- point_inputs,
- mask_inputs,
- output_dict,
- num_frames,
- track_in_reverse=False, # tracking in reverse time order (for demo usage)
- # Whether to run the memory encoder on the predicted masks. Sometimes we might want
- # to skip the memory encoder with `run_mem_encoder=False`. For example,
- # in demo we might call `track_step` multiple times for each user click,
- # and only encode the memory when the user finalizes their clicks. And in ablation
- # settings like SAM training on static images, we don't need the memory encoder.
- run_mem_encoder=True,
- # The previously predicted SAM mask logits (which can be fed together with new clicks in demo).
- prev_sam_mask_logits=None,
- use_prev_mem_frame=True,
- ):
- current_out = {"point_inputs": point_inputs, "mask_inputs": mask_inputs}
- # High-resolution feature maps for the SAM head, reshape (HW)BC => BCHW
- if len(current_vision_feats) > 1:
- high_res_features = [
- x.permute(1, 2, 0).view(x.size(1), x.size(2), *s)
- for x, s in zip(current_vision_feats[:-1], feat_sizes[:-1])
- ]
- else:
- high_res_features = None
- if mask_inputs is not None:
- # (see it as a GT mask) without using a SAM prompt encoder + mask decoder.
- pix_feat = current_vision_feats[-1].permute(1, 2, 0)
- pix_feat = pix_feat.view(-1, self.hidden_dim, *feat_sizes[-1])
- sam_outputs = self._use_mask_as_output(
- pix_feat, high_res_features, mask_inputs
- )
- else:
- # fused the visual feature with previous memory features in the memory bank
- pix_feat_with_mem = self._prepare_memory_conditioned_features(
- frame_idx=frame_idx,
- is_init_cond_frame=is_init_cond_frame,
- current_vision_feats=current_vision_feats[-1:],
- current_vision_pos_embeds=current_vision_pos_embeds[-1:],
- feat_sizes=feat_sizes[-1:],
- output_dict=output_dict,
- num_frames=num_frames,
- track_in_reverse=track_in_reverse,
- use_prev_mem_frame=use_prev_mem_frame,
- )
- # apply SAM-style segmentation head
- # here we might feed previously predicted low-res SAM mask logits into the SAM mask decoder,
- # e.g. in demo where such logits come from earlier interaction instead of correction sampling
- # (in this case, the SAM mask decoder should have `self.iter_use_prev_mask_pred=True`, and
- # any `mask_inputs` shouldn't reach here as they are sent to _use_mask_as_output instead)
- if prev_sam_mask_logits is not None:
- assert self.iter_use_prev_mask_pred
- assert point_inputs is not None and mask_inputs is None
- mask_inputs = prev_sam_mask_logits
- multimask_output = self._use_multimask(is_init_cond_frame, point_inputs)
- sam_outputs = self._forward_sam_heads(
- backbone_features=pix_feat_with_mem,
- point_inputs=point_inputs,
- mask_inputs=mask_inputs,
- high_res_features=high_res_features,
- multimask_output=multimask_output,
- )
- (
- _,
- high_res_multimasks,
- ious,
- low_res_masks,
- high_res_masks,
- obj_ptr,
- object_score_logits,
- ) = sam_outputs
- # Use the final prediction (after all correction steps for output and eval)
- current_out["pred_masks"] = low_res_masks
- current_out["pred_masks_high_res"] = high_res_masks
- current_out["obj_ptr"] = obj_ptr
- if self.use_memory_selection:
- current_out["object_score_logits"] = object_score_logits
- iou_score = ious.max(-1)[0]
- current_out["iou_score"] = iou_score
- current_out["eff_iou_score"] = self.cal_mem_score(
- object_score_logits, iou_score
- )
- if not self.training:
- # Only add this in inference (to avoid unused param in activation checkpointing;
- # it's mainly used in the demo to encode spatial memories w/ consolidated masks)
- current_out["object_score_logits"] = object_score_logits
- # Finally run the memory encoder on the predicted mask to encode
- # it into a new memory feature (that can be used in future frames)
- # (note that `self.num_maskmem == 0` is primarily used for reproducing SAM on
- # images, in which case we'll just skip memory encoder to save compute).
- if run_mem_encoder and self.num_maskmem > 0:
- high_res_masks_for_mem_enc = high_res_masks
- maskmem_features, maskmem_pos_enc = self._encode_new_memory(
- image=image,
- current_vision_feats=current_vision_feats,
- feat_sizes=feat_sizes,
- pred_masks_high_res=high_res_masks_for_mem_enc,
- object_score_logits=object_score_logits,
- is_mask_from_pts=(point_inputs is not None),
- output_dict=output_dict,
- is_init_cond_frame=is_init_cond_frame,
- )
- current_out["maskmem_features"] = maskmem_features
- current_out["maskmem_pos_enc"] = maskmem_pos_enc
- else:
- current_out["maskmem_features"] = None
- current_out["maskmem_pos_enc"] = None
- # Optionally, offload the outputs to CPU memory during evaluation to avoid
- # GPU OOM on very long videos or very large resolution or too many objects
- if self.offload_output_to_cpu_for_eval and not self.training:
- # Here we only keep those keys needed for evaluation to get a compact output
- trimmed_out = {
- "pred_masks": current_out["pred_masks"].cpu(),
- "pred_masks_high_res": current_out["pred_masks_high_res"].cpu(),
- # other items for evaluation (these are small tensors so we keep them on GPU)
- "obj_ptr": current_out["obj_ptr"],
- "object_score_logits": current_out["object_score_logits"],
- }
- if run_mem_encoder and self.num_maskmem > 0:
- trimmed_out["maskmem_features"] = maskmem_features.cpu()
- trimmed_out["maskmem_pos_enc"] = [x.cpu() for x in maskmem_pos_enc]
- if self.use_memory_selection:
- trimmed_out["iou_score"] = current_out["iou_score"].cpu()
- trimmed_out["eff_iou_score"] = current_out["eff_iou_score"].cpu()
- current_out = trimmed_out
- # Optionally, trim the output of past non-conditioning frame (r * num_maskmem frames
- # before the current frame) during evaluation. This is intended to save GPU or CPU
- # memory for semi-supervised VOS eval, where only the first frame receives prompts.
- def _trim_past_out(past_out, current_out):
- if past_out is None:
- return None
- return {
- "pred_masks": past_out["pred_masks"],
- "obj_ptr": past_out["obj_ptr"],
- "object_score_logits": past_out["object_score_logits"],
- }
- if self.trim_past_non_cond_mem_for_eval and not self.training:
- r = self.memory_temporal_stride_for_eval
- past_frame_idx = frame_idx - r * self.num_maskmem
- past_out = output_dict["non_cond_frame_outputs"].get(past_frame_idx, None)
- if past_out is not None:
- print(past_out.get("eff_iou_score", 0))
- if (
- self.use_memory_selection
- and past_out.get("eff_iou_score", 0) < self.mf_threshold
- ) or not self.use_memory_selection:
- output_dict["non_cond_frame_outputs"][past_frame_idx] = (
- _trim_past_out(past_out, current_out)
- )
- if (
- self.use_memory_selection and not self.offload_output_to_cpu_for_eval
- ): ## design for memory selection, trim too old frames to save memory
- far_old_frame_idx = frame_idx - 20 * self.max_obj_ptrs_in_encoder
- past_out = output_dict["non_cond_frame_outputs"].get(
- far_old_frame_idx, None
- )
- if past_out is not None:
- output_dict["non_cond_frame_outputs"][far_old_frame_idx] = (
- _trim_past_out(past_out, current_out)
- )
- return current_out
- def _use_multimask(self, is_init_cond_frame, point_inputs):
- """Whether to use multimask output in the SAM head."""
- num_pts = 0 if point_inputs is None else point_inputs["point_labels"].size(1)
- multimask_output = (
- self.multimask_output_in_sam
- and (is_init_cond_frame or self.multimask_output_for_tracking)
- and (self.multimask_min_pt_num <= num_pts <= self.multimask_max_pt_num)
- )
- return multimask_output
- def _apply_non_overlapping_constraints(self, pred_masks):
- """
- Apply non-overlapping constraints to the object scores in pred_masks. Here we
- keep only the highest scoring object at each spatial location in pred_masks.
- """
- batch_size = pred_masks.size(0)
- if batch_size == 1:
- return pred_masks
- device = pred_masks.device
- # "max_obj_inds": object index of the object with the highest score at each location
- max_obj_inds = torch.argmax(pred_masks, dim=0, keepdim=True)
- # "batch_obj_inds": object index of each object slice (along dim 0) in `pred_masks`
- batch_obj_inds = torch.arange(batch_size, device=device)[:, None, None, None]
- keep = max_obj_inds == batch_obj_inds
- # suppress overlapping regions' scores below -10.0 so that the foreground regions
- # don't overlap (here sigmoid(-10.0)=4.5398e-05)
- pred_masks = torch.where(keep, pred_masks, torch.clamp(pred_masks, max=-10.0))
- return pred_masks
- def _compile_all_components(self):
- """Compile all model components for faster inference."""
- # a larger cache size to hold varying number of shapes for torch.compile
- # see https://github.com/pytorch/pytorch/blob/v2.5.1/torch/_dynamo/config.py#L42-L49
- torch._dynamo.config.cache_size_limit = 64
- torch._dynamo.config.accumulated_cache_size_limit = 2048
- from sam3.perflib.compile import compile_wrapper
- logging.info("Compiling all components. First time may be very slow.")
- self.maskmem_backbone.forward = compile_wrapper(
- self.maskmem_backbone.forward,
- mode="max-autotune",
- fullgraph=True,
- dynamic=False,
- )
- self.transformer.encoder.forward = compile_wrapper(
- self.transformer.encoder.forward,
- mode="max-autotune",
- fullgraph=True,
- dynamic=True, # Num. of memories varies
- )
- # We disable compilation of sam_prompt_encoder as it sometimes gives a large accuracy regression,
- # especially when sam_mask_prompt (previous mask logits) is not None
- # self.sam_prompt_encoder.forward = torch.compile(
- # self.sam_prompt_encoder.forward,
- # mode="max-autotune",
- # fullgraph=True,
- # dynamic=False, # Accuracy regression on True
- # )
- self.sam_mask_decoder.forward = compile_wrapper(
- self.sam_mask_decoder.forward,
- mode="max-autotune",
- fullgraph=True,
- dynamic=False, # Accuracy regression on True
- )
- def _maybe_clone(self, x):
- """Clone a tensor if and only if `self.compile_all_components` is True."""
- return x.clone() if self.compile_all_components else x
- def concat_points(old_point_inputs, new_points, new_labels):
- """Add new points and labels to previous point inputs (add at the end)."""
- if old_point_inputs is None:
- points, labels = new_points, new_labels
- else:
- points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1)
- labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1)
- return {"point_coords": points, "point_labels": labels}
|