| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880 |
- # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
- # pyre-unsafe
- import os
- from copy import deepcopy
- from typing import Dict, List, Optional, Tuple
- import numpy as np
- import torch
- from sam3.model.model_misc import SAM3Output
- from sam3.model.sam1_task_predictor import SAM3InteractiveImagePredictor
- from sam3.model.vl_combiner import SAM3VLBackbone
- from sam3.perflib.nms import nms_masks
- from sam3.train.data.collator import BatchedDatapoint
- from .act_ckpt_utils import activation_ckpt_wrapper
- from .box_ops import box_cxcywh_to_xyxy
- from .geometry_encoders import Prompt
- from .model_misc import inverse_sigmoid
- def _update_out(out, out_name, out_value, auxiliary=True, update_aux=True):
- out[out_name] = out_value[-1] if auxiliary else out_value
- if auxiliary and update_aux:
- if "aux_outputs" not in out:
- out["aux_outputs"] = [{} for _ in range(len(out_value) - 1)]
- assert len(out["aux_outputs"]) == len(out_value) - 1
- for aux_output, aux_value in zip(out["aux_outputs"], out_value[:-1]):
- aux_output[out_name] = aux_value
- class Sam3Image(torch.nn.Module):
- TEXT_ID_FOR_TEXT = 0
- TEXT_ID_FOR_VISUAL = 1
- TEXT_ID_FOR_GEOMETRIC = 2
- def __init__(
- self,
- backbone: SAM3VLBackbone,
- transformer,
- input_geometry_encoder,
- segmentation_head=None,
- num_feature_levels=1,
- o2m_mask_predict=True,
- dot_prod_scoring=None,
- use_instance_query: bool = True,
- multimask_output: bool = True,
- use_act_checkpoint_seg_head: bool = True,
- interactivity_in_encoder: bool = True,
- matcher=None,
- use_dot_prod_scoring=True,
- supervise_joint_box_scores: bool = False, # only relevant if using presence token/score
- detach_presence_in_joint_score: bool = False, # only relevant if using presence token/score
- separate_scorer_for_instance: bool = False,
- num_interactive_steps_val: int = 0,
- inst_interactive_predictor: SAM3InteractiveImagePredictor = None,
- **kwargs,
- ):
- super().__init__()
- self.backbone = backbone
- self.geometry_encoder = input_geometry_encoder
- self.transformer = transformer
- self.hidden_dim = transformer.d_model
- self.num_feature_levels = num_feature_levels
- self.segmentation_head = segmentation_head
- self.o2m_mask_predict = o2m_mask_predict
- self.dot_prod_scoring = dot_prod_scoring
- self.use_act_checkpoint_seg_head = use_act_checkpoint_seg_head
- self.interactivity_in_encoder = interactivity_in_encoder
- self.matcher = matcher
- self.num_interactive_steps_val = num_interactive_steps_val
- self.use_dot_prod_scoring = use_dot_prod_scoring
- if self.use_dot_prod_scoring:
- assert dot_prod_scoring is not None
- self.dot_prod_scoring = dot_prod_scoring
- self.instance_dot_prod_scoring = None
- if separate_scorer_for_instance:
- self.instance_dot_prod_scoring = deepcopy(dot_prod_scoring)
- else:
- self.class_embed = torch.nn.Linear(self.hidden_dim, 1)
- self.instance_class_embed = None
- if separate_scorer_for_instance:
- self.instance_class_embed = deepcopy(self.class_embed)
- self.supervise_joint_box_scores = supervise_joint_box_scores
- self.detach_presence_in_joint_score = detach_presence_in_joint_score
- # verify the number of queries for O2O and O2M
- num_o2o_static = self.transformer.decoder.num_queries
- num_o2m_static = self.transformer.decoder.num_o2m_queries
- assert num_o2m_static == (num_o2o_static if self.transformer.decoder.dac else 0)
- self.dac = self.transformer.decoder.dac
- self.use_instance_query = use_instance_query
- self.multimask_output = multimask_output
- self.inst_interactive_predictor = inst_interactive_predictor
- @property
- def device(self):
- self._device = getattr(self, "_device", None) or next(self.parameters()).device
- return self._device
- def to(self, *args, **kwargs):
- # clear cached _device in case the model is moved to a different device
- self._device = None
- return super().to(*args, **kwargs)
- def _get_img_feats(self, backbone_out, img_ids):
- """Retrieve correct image features from backbone output."""
- if "backbone_fpn" in backbone_out:
- if "id_mapping" in backbone_out and backbone_out["id_mapping"] is not None:
- img_ids = backbone_out["id_mapping"][img_ids]
- # If this assert fails, it likely means we're requesting different img_ids (perhaps a different frame?)
- # We currently don't expect this to happen. We could technically trigger a recompute here,
- # but likely at the cost of a cpu<->gpu sync point, which would deteriorate perf
- torch._assert_async((img_ids >= 0).all())
- vis_feats = backbone_out["backbone_fpn"][-self.num_feature_levels :]
- vis_pos_enc = backbone_out["vision_pos_enc"][-self.num_feature_levels :]
- vis_feat_sizes = [x.shape[-2:] for x in vis_pos_enc] # (H, W) shapes
- # index and flatten visual features NxCxHxW => HWxNxC (batch-first => seq-first)
- img_feats = [x[img_ids].flatten(2).permute(2, 0, 1) for x in vis_feats]
- img_pos_embeds = [
- x[img_ids].flatten(2).permute(2, 0, 1) for x in vis_pos_enc
- ]
- return backbone_out, img_feats, img_pos_embeds, vis_feat_sizes
- # Image features not available in backbone output, so we compute them on the fly
- # This case likely occurs for video. In that case, we want to forward only the current frame
- img_batch = backbone_out["img_batch_all_stages"]
- if img_ids.numel() > 1:
- # Only forward backbone on unique image ids to avoid repetitive computation
- unique_ids, _ = torch.unique(img_ids, return_inverse=True)
- else:
- unique_ids, _ = img_ids, slice(None)
- # Compute the image features on those unique image ids
- # note: we allow using a list (or other indexable types) of tensors as img_batch
- # (e.g. for async frame loading in demo). In this case we index img_batch.tensors directly
- if isinstance(img_batch, torch.Tensor):
- image = img_batch[unique_ids]
- elif unique_ids.numel() == 1:
- image = img_batch[unique_ids.item()].unsqueeze(0)
- else:
- image = torch.stack([img_batch[i] for i in unique_ids.tolist()])
- # `img_batch` might be fp16 and offloaded to CPU
- image = image.to(dtype=torch.float32, device=self.device)
- # Next time we call this function, we want to remember which indices we computed
- id_mapping = torch.full(
- (len(img_batch),), -1, dtype=torch.long, device=self.device
- )
- id_mapping[unique_ids] = torch.arange(len(unique_ids), device=self.device)
- backbone_out = {
- **backbone_out,
- **self.backbone.forward_image(image),
- "id_mapping": id_mapping,
- }
- assert "backbone_fpn" in backbone_out
- return self._get_img_feats(backbone_out, img_ids=img_ids)
- def _encode_prompt(
- self,
- backbone_out,
- find_input,
- geometric_prompt,
- visual_prompt_embed=None,
- visual_prompt_mask=None,
- encode_text=True,
- prev_mask_pred=None,
- ):
- # index text features (note that regardless of early or late fusion, the batch size of
- # `txt_feats` is always the number of *prompts* in the encoder)
- txt_ids = find_input.text_ids
- txt_feats = backbone_out["language_features"][:, txt_ids]
- txt_masks = backbone_out["language_mask"][txt_ids]
- feat_tuple = self._get_img_feats(backbone_out, find_input.img_ids)
- backbone_out, img_feats, img_pos_embeds, vis_feat_sizes = feat_tuple
- if prev_mask_pred is not None:
- img_feats = [img_feats[-1] + prev_mask_pred]
- # Encode geometry
- geo_feats, geo_masks = self.geometry_encoder(
- geo_prompt=geometric_prompt,
- img_feats=img_feats,
- img_sizes=vis_feat_sizes,
- img_pos_embeds=img_pos_embeds,
- )
- if visual_prompt_embed is None:
- visual_prompt_embed = torch.zeros(
- (0, *geo_feats.shape[1:]), device=geo_feats.device
- )
- visual_prompt_mask = torch.zeros(
- (*geo_masks.shape[:-1], 0),
- device=geo_masks.device,
- dtype=geo_masks.dtype,
- )
- if encode_text:
- prompt = torch.cat([txt_feats, geo_feats, visual_prompt_embed], dim=0)
- prompt_mask = torch.cat([txt_masks, geo_masks, visual_prompt_mask], dim=1)
- else:
- prompt = torch.cat([geo_feats, visual_prompt_embed], dim=0)
- prompt_mask = torch.cat([geo_masks, visual_prompt_mask], dim=1)
- return prompt, prompt_mask, backbone_out
- def _run_encoder(
- self,
- backbone_out,
- find_input,
- prompt,
- prompt_mask,
- encoder_extra_kwargs: Optional[Dict] = None,
- ):
- feat_tuple = self._get_img_feats(backbone_out, find_input.img_ids)
- backbone_out, img_feats, img_pos_embeds, vis_feat_sizes = feat_tuple
- # Run the encoder
- prompt_pos_embed = torch.zeros_like(prompt)
- # make a copy of the image feature lists since the encoder may modify these lists in-place
- memory = self.transformer.encoder(
- src=img_feats.copy(),
- src_key_padding_mask=None,
- src_pos=img_pos_embeds.copy(),
- prompt=prompt,
- prompt_pos=prompt_pos_embed,
- prompt_key_padding_mask=prompt_mask,
- feat_sizes=vis_feat_sizes,
- encoder_extra_kwargs=encoder_extra_kwargs,
- )
- encoder_out = {
- # encoded image features
- "encoder_hidden_states": memory["memory"],
- "pos_embed": memory["pos_embed"],
- "padding_mask": memory["padding_mask"],
- "level_start_index": memory["level_start_index"],
- "spatial_shapes": memory["spatial_shapes"],
- "valid_ratios": memory["valid_ratios"],
- "vis_feat_sizes": vis_feat_sizes,
- # encoded text features (or other prompts)
- "prompt_before_enc": prompt,
- "prompt_after_enc": memory.get("memory_text", prompt),
- "prompt_mask": prompt_mask,
- }
- return backbone_out, encoder_out, feat_tuple
- def _run_decoder(
- self,
- pos_embed,
- memory,
- src_mask,
- out,
- prompt,
- prompt_mask,
- encoder_out,
- ):
- bs = memory.shape[1]
- query_embed = self.transformer.decoder.query_embed.weight
- tgt = query_embed.unsqueeze(1).repeat(1, bs, 1)
- apply_dac = self.transformer.decoder.dac and self.training
- hs, reference_boxes, dec_presence_out, dec_presence_feats = (
- self.transformer.decoder(
- tgt=tgt,
- memory=memory,
- memory_key_padding_mask=src_mask,
- pos=pos_embed,
- reference_boxes=None,
- level_start_index=encoder_out["level_start_index"],
- spatial_shapes=encoder_out["spatial_shapes"],
- valid_ratios=encoder_out["valid_ratios"],
- tgt_mask=None,
- memory_text=prompt,
- text_attention_mask=prompt_mask,
- apply_dac=apply_dac,
- )
- )
- hs = hs.transpose(1, 2) # seq-first to batch-first
- reference_boxes = reference_boxes.transpose(1, 2) # seq-first to batch-first
- if dec_presence_out is not None:
- # seq-first to batch-first
- dec_presence_out = dec_presence_out.transpose(1, 2)
- out["presence_feats"] = dec_presence_feats
- self._update_scores_and_boxes(
- out,
- hs,
- reference_boxes,
- prompt,
- prompt_mask,
- dec_presence_out=dec_presence_out,
- )
- return out, hs
- def _update_scores_and_boxes(
- self,
- out,
- hs,
- reference_boxes,
- prompt,
- prompt_mask,
- dec_presence_out=None,
- is_instance_prompt=False,
- ):
- apply_dac = self.transformer.decoder.dac and self.training
- num_o2o = (hs.size(2) // 2) if apply_dac else hs.size(2)
- num_o2m = hs.size(2) - num_o2o
- assert num_o2m == (num_o2o if apply_dac else 0)
- out["queries"] = hs[-1][:, :num_o2o] # remove o2m queries if there are any
- # score prediction
- if self.use_dot_prod_scoring:
- dot_prod_scoring_head = self.dot_prod_scoring
- if is_instance_prompt and self.instance_dot_prod_scoring is not None:
- dot_prod_scoring_head = self.instance_dot_prod_scoring
- outputs_class = dot_prod_scoring_head(hs, prompt, prompt_mask)
- else:
- class_embed_head = self.class_embed
- if is_instance_prompt and self.instance_class_embed is not None:
- class_embed_head = self.instance_class_embed
- outputs_class = class_embed_head(hs)
- # box prediction
- box_head = self.transformer.decoder.bbox_embed
- if (
- is_instance_prompt
- and self.transformer.decoder.instance_bbox_embed is not None
- ):
- box_head = self.transformer.decoder.instance_bbox_embed
- anchor_box_offsets = box_head(hs)
- reference_boxes_inv_sig = inverse_sigmoid(reference_boxes)
- outputs_coord = (reference_boxes_inv_sig + anchor_box_offsets).sigmoid()
- outputs_boxes_xyxy = box_cxcywh_to_xyxy(outputs_coord)
- if dec_presence_out is not None:
- _update_out(
- out, "presence_logit_dec", dec_presence_out, update_aux=self.training
- )
- if self.supervise_joint_box_scores:
- assert dec_presence_out is not None
- prob_dec_presence_out = dec_presence_out.clone().sigmoid()
- if self.detach_presence_in_joint_score:
- prob_dec_presence_out = prob_dec_presence_out.detach()
- outputs_class = inverse_sigmoid(
- outputs_class.sigmoid() * prob_dec_presence_out.unsqueeze(2)
- ).clamp(min=-10.0, max=10.0)
- _update_out(
- out, "pred_logits", outputs_class[:, :, :num_o2o], update_aux=self.training
- )
- _update_out(
- out, "pred_boxes", outputs_coord[:, :, :num_o2o], update_aux=self.training
- )
- _update_out(
- out,
- "pred_boxes_xyxy",
- outputs_boxes_xyxy[:, :, :num_o2o],
- update_aux=self.training,
- )
- if num_o2m > 0 and self.training:
- _update_out(
- out,
- "pred_logits_o2m",
- outputs_class[:, :, num_o2o:],
- update_aux=self.training,
- )
- _update_out(
- out,
- "pred_boxes_o2m",
- outputs_coord[:, :, num_o2o:],
- update_aux=self.training,
- )
- _update_out(
- out,
- "pred_boxes_xyxy_o2m",
- outputs_boxes_xyxy[:, :, num_o2o:],
- update_aux=self.training,
- )
- def _run_segmentation_heads(
- self,
- out,
- backbone_out,
- img_ids,
- vis_feat_sizes,
- encoder_hidden_states,
- prompt,
- prompt_mask,
- hs,
- ):
- apply_dac = self.transformer.decoder.dac and self.training
- if self.segmentation_head is not None:
- num_o2o = (hs.size(2) // 2) if apply_dac else hs.size(2)
- num_o2m = hs.size(2) - num_o2o
- obj_queries = hs if self.o2m_mask_predict else hs[:, :, :num_o2o]
- seg_head_outputs = activation_ckpt_wrapper(self.segmentation_head)(
- backbone_feats=backbone_out["backbone_fpn"],
- obj_queries=obj_queries,
- image_ids=img_ids,
- encoder_hidden_states=encoder_hidden_states,
- act_ckpt_enable=self.training and self.use_act_checkpoint_seg_head,
- prompt=prompt,
- prompt_mask=prompt_mask,
- )
- aux_masks = False # self.aux_loss and self.segmentation_head.aux_masks
- for k, v in seg_head_outputs.items():
- if k in self.segmentation_head.instance_keys:
- _update_out(out, k, v[:, :num_o2o], auxiliary=aux_masks)
- if (
- self.o2m_mask_predict and num_o2m > 0
- ): # handle o2m mask prediction
- _update_out(
- out, f"{k}_o2m", v[:, num_o2o:], auxiliary=aux_masks
- )
- else:
- out[k] = v
- else:
- backbone_out.pop("backbone_fpn", None)
- def _get_best_mask(self, out):
- prev_mask_idx = out["pred_logits"].argmax(dim=1).squeeze(1)
- batch_idx = torch.arange(
- out["pred_logits"].shape[0], device=prev_mask_idx.device
- )
- prev_mask_pred = out["pred_masks"][batch_idx, prev_mask_idx][:, None]
- # Downsample mask to match image resolution.
- prev_mask_pred = self.geometry_encoder.mask_encoder.mask_downsampler(
- prev_mask_pred
- )
- prev_mask_pred = prev_mask_pred.flatten(-2).permute(2, 0, 1)
- return prev_mask_pred
- def forward_grounding(
- self,
- backbone_out,
- find_input,
- find_target,
- geometric_prompt: Prompt,
- ):
- with torch.profiler.record_function("SAM3Image._encode_prompt"):
- prompt, prompt_mask, backbone_out = self._encode_prompt(
- backbone_out, find_input, geometric_prompt
- )
- # Run the encoder
- with torch.profiler.record_function("SAM3Image._run_encoder"):
- backbone_out, encoder_out, _ = self._run_encoder(
- backbone_out, find_input, prompt, prompt_mask
- )
- out = {
- "encoder_hidden_states": encoder_out["encoder_hidden_states"],
- "prev_encoder_out": {
- "encoder_out": encoder_out,
- "backbone_out": backbone_out,
- },
- }
- # Run the decoder
- with torch.profiler.record_function("SAM3Image._run_decoder"):
- out, hs = self._run_decoder(
- memory=out["encoder_hidden_states"],
- pos_embed=encoder_out["pos_embed"],
- src_mask=encoder_out["padding_mask"],
- out=out,
- prompt=prompt,
- prompt_mask=prompt_mask,
- encoder_out=encoder_out,
- )
- # Run segmentation heads
- with torch.profiler.record_function("SAM3Image._run_segmentation_heads"):
- self._run_segmentation_heads(
- out=out,
- backbone_out=backbone_out,
- img_ids=find_input.img_ids,
- vis_feat_sizes=encoder_out["vis_feat_sizes"],
- encoder_hidden_states=out["encoder_hidden_states"],
- prompt=prompt,
- prompt_mask=prompt_mask,
- hs=hs,
- )
- if self.training or self.num_interactive_steps_val > 0:
- self._compute_matching(out, self.back_convert(find_target))
- return out
- def _postprocess_out(self, out: Dict, multimask_output: bool = False):
- # For multimask output, during eval we return the single best mask with the dict keys expected by the evaluators, but also return the multimasks output with new keys.
- num_mask_boxes = out["pred_boxes"].size(1)
- if not self.training and multimask_output and num_mask_boxes > 1:
- out["multi_pred_logits"] = out["pred_logits"]
- if "pred_masks" in out:
- out["multi_pred_masks"] = out["pred_masks"]
- out["multi_pred_boxes"] = out["pred_boxes"]
- out["multi_pred_boxes_xyxy"] = out["pred_boxes_xyxy"]
- best_mask_idx = out["pred_logits"].argmax(1).squeeze(1)
- batch_idx = torch.arange(len(best_mask_idx), device=best_mask_idx.device)
- out["pred_logits"] = out["pred_logits"][batch_idx, best_mask_idx].unsqueeze(
- 1
- )
- if "pred_masks" in out:
- out["pred_masks"] = out["pred_masks"][
- batch_idx, best_mask_idx
- ].unsqueeze(1)
- out["pred_boxes"] = out["pred_boxes"][batch_idx, best_mask_idx].unsqueeze(1)
- out["pred_boxes_xyxy"] = out["pred_boxes_xyxy"][
- batch_idx, best_mask_idx
- ].unsqueeze(1)
- return out
- def _get_dummy_prompt(self, num_prompts=1):
- device = self.device
- geometric_prompt = Prompt(
- box_embeddings=torch.zeros(0, num_prompts, 4, device=device),
- box_mask=torch.zeros(num_prompts, 0, device=device, dtype=torch.bool),
- )
- return geometric_prompt
- def forward(self, input: BatchedDatapoint):
- device = self.device
- backbone_out = {"img_batch_all_stages": input.img_batch}
- backbone_out.update(self.backbone.forward_image(input.img_batch))
- num_frames = len(input.find_inputs)
- assert num_frames == 1
- text_outputs = self.backbone.forward_text(input.find_text_batch, device=device)
- backbone_out.update(text_outputs)
- previous_stages_out = SAM3Output(
- iter_mode=SAM3Output.IterMode.LAST_STEP_PER_STAGE
- )
- find_input = input.find_inputs[0]
- find_target = input.find_targets[0]
- if find_input.input_points is not None and find_input.input_points.numel() > 0:
- print("Warning: Point prompts are ignored in PCS.")
- num_interactive_steps = 0 if self.training else self.num_interactive_steps_val
- geometric_prompt = Prompt(
- box_embeddings=find_input.input_boxes,
- box_mask=find_input.input_boxes_mask,
- box_labels=find_input.input_boxes_label,
- )
- # Init vars that are shared across the loop.
- stage_outs = []
- for cur_step in range(num_interactive_steps + 1):
- if cur_step > 0:
- # We sample interactive geometric prompts (boxes, points)
- geometric_prompt, _ = self.interactive_prompt_sampler.sample(
- geo_prompt=geometric_prompt,
- find_target=find_target,
- previous_out=stage_outs[-1],
- )
- out = self.forward_grounding(
- backbone_out=backbone_out,
- find_input=find_input,
- find_target=find_target,
- geometric_prompt=geometric_prompt.clone(),
- )
- stage_outs.append(out)
- previous_stages_out.append(stage_outs)
- return previous_stages_out
- def _compute_matching(self, out, targets):
- out["indices"] = self.matcher(out, targets)
- for aux_out in out.get("aux_outputs", []):
- aux_out["indices"] = self.matcher(aux_out, targets)
- def back_convert(self, targets):
- batched_targets = {
- "boxes": targets.boxes.view(-1, 4),
- "boxes_xyxy": box_cxcywh_to_xyxy(targets.boxes.view(-1, 4)),
- "boxes_padded": targets.boxes_padded,
- "positive_map": targets.boxes.new_ones(len(targets.boxes), 1),
- "num_boxes": targets.num_boxes,
- "masks": targets.segments,
- "semantic_masks": targets.semantic_segments,
- "is_valid_mask": targets.is_valid_segment,
- "is_exhaustive": targets.is_exhaustive,
- "object_ids_packed": targets.object_ids,
- "object_ids_padded": targets.object_ids_padded,
- }
- return batched_targets
- def predict_inst(
- self,
- inference_state,
- **kwargs,
- ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
- orig_h, orig_w = (
- inference_state["original_height"],
- inference_state["original_width"],
- )
- backbone_out = inference_state["backbone_out"]["sam2_backbone_out"]
- (
- _,
- vision_feats,
- _,
- _,
- ) = self.inst_interactive_predictor.model._prepare_backbone_features(
- backbone_out
- )
- # Add no_mem_embed, which is added to the lowest rest feat. map during training on videos
- vision_feats[-1] = (
- vision_feats[-1] + self.inst_interactive_predictor.model.no_mem_embed
- )
- feats = [
- feat.permute(1, 2, 0).view(1, -1, *feat_size)
- for feat, feat_size in zip(
- vision_feats[::-1], self.inst_interactive_predictor._bb_feat_sizes[::-1]
- )
- ][::-1]
- self.inst_interactive_predictor._features = {
- "image_embed": feats[-1],
- "high_res_feats": feats[:-1],
- }
- self.inst_interactive_predictor._is_image_set = True
- self.inst_interactive_predictor._orig_hw = [(orig_h, orig_w)]
- res = self.inst_interactive_predictor.predict(**kwargs)
- self.inst_interactive_predictor._features = None
- self.inst_interactive_predictor._is_image_set = False
- return res
- def predict_inst_batch(
- self,
- inference_state,
- *args,
- **kwargs,
- ) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray]]:
- backbone_out = inference_state["backbone_out"]["sam2_backbone_out"]
- (
- _,
- vision_feats,
- _,
- _,
- ) = self.inst_interactive_predictor.model._prepare_backbone_features(
- backbone_out
- )
- # Add no_mem_embed, which is added to the lowest res feat. map during training on videos
- vision_feats[-1] = (
- vision_feats[-1] + self.inst_interactive_predictor.model.no_mem_embed
- )
- batch_size = vision_feats[-1].shape[1]
- orig_heights, orig_widths = (
- inference_state["original_heights"],
- inference_state["original_widths"],
- )
- assert batch_size == len(orig_heights) == len(orig_widths), (
- f"Batch size mismatch in predict_inst_batch. Got {batch_size}, {len(orig_heights)}, {len(orig_widths)}"
- )
- feats = [
- feat.permute(1, 2, 0).view(batch_size, -1, *feat_size)
- for feat, feat_size in zip(
- vision_feats[::-1], self.inst_interactive_predictor._bb_feat_sizes[::-1]
- )
- ][::-1]
- self.inst_interactive_predictor._features = {
- "image_embed": feats[-1],
- "high_res_feats": feats[:-1],
- }
- self.inst_interactive_predictor._is_image_set = True
- self.inst_interactive_predictor._is_batch = True
- self.inst_interactive_predictor._orig_hw = [
- (orig_h, orig_w) for orig_h, orig_w in zip(orig_heights, orig_widths)
- ]
- res = self.inst_interactive_predictor.predict_batch(*args, **kwargs)
- self.inst_interactive_predictor._features = None
- self.inst_interactive_predictor._is_image_set = False
- self.inst_interactive_predictor._is_batch = False
- return res
- class Sam3ImageOnVideoMultiGPU(Sam3Image):
- def __init__(
- self, *args, async_all_gather=True, gather_backbone_out=None, **kwargs
- ):
- super().__init__(*args, **kwargs)
- self.rank = int(os.getenv("RANK", "0"))
- self.world_size = int(os.getenv("WORLD_SIZE", "1"))
- self.async_all_gather = async_all_gather
- # if gather_backbone is not set, default to gathering only for `SAM3VLBackbone`
- if gather_backbone_out is None:
- gather_backbone_out = isinstance(self.backbone, SAM3VLBackbone)
- self.gather_backbone_out = gather_backbone_out
- def forward_video_grounding_multigpu(
- self,
- backbone_out,
- find_inputs,
- geometric_prompt: Prompt,
- frame_idx,
- num_frames,
- # `multigpu_buffer` is a dict to cache detector's outputs in a chunk between different calls
- multigpu_buffer,
- track_in_reverse=False,
- # whether to also return the SAM2 backbone features
- return_sam2_backbone_feats=False,
- # whether to perform NMS and suppress the scores of those detections removed by NMS
- run_nms=False,
- nms_prob_thresh=None,
- nms_iou_thresh=None,
- **kwargs,
- ):
- """
- Compute the detector's detection outputs in a distributed manner, where all GPUs process
- a chunk of frames (equal to the number of GPUs) at once and store them in cache.
- """
- # Step 1: fetch the detector outputs in the current chunk from buffer
- frame_idx_curr_b = frame_idx - frame_idx % self.world_size
- frame_idx_curr_e = min(frame_idx_curr_b + self.world_size, num_frames)
- # in case the current frame's detection results are not in the buffer yet, build the current chunk
- # (this should only happen on the first chunk, since we are also building the next chunk below)
- if frame_idx not in multigpu_buffer:
- with torch.profiler.record_function("build_multigpu_buffer_next_chunk1"):
- self._build_multigpu_buffer_next_chunk(
- backbone_out=backbone_out,
- find_inputs=find_inputs,
- geometric_prompt=geometric_prompt,
- frame_idx_begin=frame_idx_curr_b,
- frame_idx_end=frame_idx_curr_e,
- num_frames=num_frames,
- multigpu_buffer=multigpu_buffer,
- run_nms=run_nms,
- nms_prob_thresh=nms_prob_thresh,
- nms_iou_thresh=nms_iou_thresh,
- )
- # read out the current frame's results from `multigpu_buffer`
- out = {}
- for k, (v, handle) in multigpu_buffer[frame_idx].items():
- if k.startswith("sam2_backbone_") and not return_sam2_backbone_feats:
- continue
- if handle is not None:
- handle.wait() # wait for async all-gather to finish
- out[k] = v
- # Step 2: remove detection outputs of the previous chunk from cache to save GPU memory
- if not track_in_reverse and frame_idx_curr_b - self.world_size >= 0:
- frame_idx_prev_e = frame_idx_curr_b
- frame_idx_prev_b = frame_idx_curr_b - self.world_size
- elif track_in_reverse and frame_idx_curr_e < num_frames:
- frame_idx_prev_b = frame_idx_curr_e
- frame_idx_prev_e = min(frame_idx_prev_b + self.world_size, num_frames)
- else:
- frame_idx_prev_b = frame_idx_prev_e = None
- if frame_idx_prev_b is not None:
- for frame_idx_rm in range(frame_idx_prev_b, frame_idx_prev_e):
- multigpu_buffer.pop(frame_idx_rm, None)
- # Step 3: compute and cache detection outputs of the next chunk ahead of time
- # (so that we can overlap computation with all-gather transfer)
- if not track_in_reverse and frame_idx_curr_e < num_frames:
- frame_idx_next_b = frame_idx_curr_e
- frame_idx_next_e = min(frame_idx_next_b + self.world_size, num_frames)
- elif track_in_reverse and frame_idx_curr_b - self.world_size >= 0:
- frame_idx_next_e = frame_idx_curr_b
- frame_idx_next_b = frame_idx_curr_b - self.world_size
- else:
- frame_idx_next_b = frame_idx_next_e = None
- if frame_idx_next_b is not None and frame_idx_next_b not in multigpu_buffer:
- with torch.profiler.record_function("build_multigpu_buffer_next_chunk2"):
- self._build_multigpu_buffer_next_chunk(
- backbone_out=backbone_out,
- find_inputs=find_inputs,
- geometric_prompt=geometric_prompt,
- frame_idx_begin=frame_idx_next_b,
- frame_idx_end=frame_idx_next_e,
- num_frames=num_frames,
- multigpu_buffer=multigpu_buffer,
- run_nms=run_nms,
- nms_prob_thresh=nms_prob_thresh,
- nms_iou_thresh=nms_iou_thresh,
- )
- return out, backbone_out
- def _build_multigpu_buffer_next_chunk(
- self,
- backbone_out,
- find_inputs,
- geometric_prompt: Prompt,
- frame_idx_begin,
- frame_idx_end,
- num_frames,
- multigpu_buffer,
- run_nms=False,
- nms_prob_thresh=None,
- nms_iou_thresh=None,
- ):
- """Compute detection outputs on a chunk of frames and store their results in multigpu_buffer."""
- # each GPU computes detections on one frame in the chunk (in a round-robin manner)
- frame_idx_local_gpu = min(frame_idx_begin + self.rank, frame_idx_end - 1)
- # `forward_grounding` (from base class `Sam3ImageOnVideo`) runs the detector on a single frame
- with torch.profiler.record_function("forward_grounding"):
- out_local = self.forward_grounding(
- backbone_out=backbone_out,
- find_input=find_inputs[frame_idx_local_gpu],
- find_target=None,
- geometric_prompt=geometric_prompt,
- )
- if run_nms:
- with torch.profiler.record_function("nms_masks"):
- # run NMS as a post-processing step on top of the detection outputs
- assert nms_prob_thresh is not None and nms_iou_thresh is not None
- pred_probs = out_local["pred_logits"].squeeze(-1).sigmoid()
- pred_masks = out_local["pred_masks"]
- # loop over text prompts (not an overhead for demo where there's only 1 prompt)
- for prompt_idx in range(pred_probs.size(0)):
- keep = nms_masks(
- pred_probs=pred_probs[prompt_idx],
- pred_masks=pred_masks[prompt_idx],
- prob_threshold=nms_prob_thresh,
- iou_threshold=nms_iou_thresh,
- )
- # set a very low threshold for those detections removed by NMS
- out_local["pred_logits"][prompt_idx, :, 0] -= 1e4 * (~keep).float()
- if self.gather_backbone_out:
- # gather the SAM 2 backbone features across GPUs
- feats = out_local["prev_encoder_out"]["backbone_out"]["sam2_backbone_out"]
- assert len(feats["backbone_fpn"]) == 3 # SAM2 backbone always have 3 levels
- # cast the SAM2 backbone features to bfloat16 for all-gather (this is usually
- # a no-op, SAM2 backbone features are likely already in bfloat16 due to AMP)
- backbone_fpn_bf16 = [x.to(torch.bfloat16) for x in feats["backbone_fpn"]]
- fpn0, fpn_handle0 = self._gather_tensor(backbone_fpn_bf16[0])
- fpn1, fpn_handle1 = self._gather_tensor(backbone_fpn_bf16[1])
- fpn2, fpn_handle2 = self._gather_tensor(backbone_fpn_bf16[2])
- # vision_pos_enc is the same on all frames, so no need to all-gather them
- vision_pos_enc = feats["vision_pos_enc"]
- # trim the detector output to only include the necessary keys
- out_local = {
- "pred_logits": out_local["pred_logits"],
- "pred_boxes": out_local["pred_boxes"],
- "pred_boxes_xyxy": out_local["pred_boxes_xyxy"],
- "pred_masks": out_local["pred_masks"],
- }
- # gather the results: after this step, each GPU will receive detector outputs on
- # all frames in the chunk and store them in `multigpu_buffer`
- out_gathered = {k: self._gather_tensor(v) for k, v in out_local.items()}
- for rank in range(self.world_size):
- frame_idx_to_save = frame_idx_begin + rank
- if frame_idx_to_save >= num_frames:
- continue
- frame_buffer = {
- k: (v[rank], handle) for k, (v, handle) in out_gathered.items()
- }
- if self.gather_backbone_out:
- # also add gathered SAM 2 backbone features to frame_buffer
- frame_buffer["tracker_backbone_fpn_0"] = (fpn0[rank], fpn_handle0)
- frame_buffer["tracker_backbone_fpn_1"] = (fpn1[rank], fpn_handle1)
- frame_buffer["tracker_backbone_fpn_2"] = (fpn2[rank], fpn_handle2)
- frame_buffer["tracker_backbone_pos_enc"] = (vision_pos_enc, None)
- multigpu_buffer[frame_idx_to_save] = frame_buffer
- def _gather_tensor(self, x):
- if self.world_size == 1:
- return [x], None
- async_op = self.async_all_gather
- # here `.contiguous()` is required -- otherwise NCCL all_gather
- # sometimes gives wrong results
- x = x.contiguous() # ensure contiguous memory for NCCL
- output_list = [torch.empty_like(x) for _ in range(self.world_size)]
- handle = torch.distributed.all_gather(output_list, x, async_op=async_op)
- return output_list, handle
|