| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 |
- # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
- # pyre-unsafe
- """
- Utilities for bounding box manipulation and GIoU.
- """
- from typing import Tuple
- import torch
- def box_cxcywh_to_xyxy(x):
- x_c, y_c, w, h = x.unbind(-1)
- b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (x_c + 0.5 * w), (y_c + 0.5 * h)]
- return torch.stack(b, dim=-1)
- def box_cxcywh_to_xywh(x):
- x_c, y_c, w, h = x.unbind(-1)
- b = [(x_c - 0.5 * w), (y_c - 0.5 * h), (w), (h)]
- return torch.stack(b, dim=-1)
- def box_xywh_to_xyxy(x):
- x, y, w, h = x.unbind(-1)
- b = [(x), (y), (x + w), (y + h)]
- return torch.stack(b, dim=-1)
- def box_xywh_to_cxcywh(x):
- x, y, w, h = x.unbind(-1)
- b = [(x + 0.5 * w), (y + 0.5 * h), (w), (h)]
- return torch.stack(b, dim=-1)
- def box_xyxy_to_xywh(x):
- x, y, X, Y = x.unbind(-1)
- b = [(x), (y), (X - x), (Y - y)]
- return torch.stack(b, dim=-1)
- def box_xyxy_to_cxcywh(x):
- x0, y0, x1, y1 = x.unbind(-1)
- b = [(x0 + x1) / 2, (y0 + y1) / 2, (x1 - x0), (y1 - y0)]
- return torch.stack(b, dim=-1)
- def box_area(boxes):
- """
- Batched version of box area. Boxes should be in [x0, y0, x1, y1] format.
- Inputs:
- - boxes: Tensor of shape (..., 4)
- Returns:
- - areas: Tensor of shape (...,)
- """
- x0, y0, x1, y1 = boxes.unbind(-1)
- return (x1 - x0) * (y1 - y0)
- def masks_to_boxes(masks):
- """Compute the bounding boxes around the provided masks
- The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
- Returns a [N, 4] tensors, with the boxes in xyxy format
- """
- if masks.numel() == 0:
- return torch.zeros((0, 4), device=masks.device)
- h, w = masks.shape[-2:]
- y = torch.arange(0, h, dtype=torch.float, device=masks.device)
- x = torch.arange(0, w, dtype=torch.float, device=masks.device)
- y, x = torch.meshgrid(y, x)
- x_mask = masks * x.unsqueeze(0)
- x_max = x_mask.flatten(1).max(-1)[0] + 1
- x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
- y_mask = masks * y.unsqueeze(0)
- y_max = y_mask.flatten(1).max(-1)[0] + 1
- y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
- boxes = torch.stack([x_min, y_min, x_max, y_max], 1)
- # Invalidate boxes corresponding to empty masks.
- boxes = boxes * masks.flatten(-2).any(-1)
- return boxes
- def box_iou(boxes1, boxes2):
- """
- Batched version of box_iou. Boxes should be in [x0, y0, x1, y1] format.
- Inputs:
- - boxes1: Tensor of shape (..., N, 4)
- - boxes2: Tensor of shape (..., M, 4)
- Returns:
- - iou, union: Tensors of shape (..., N, M)
- """
- area1 = box_area(boxes1)
- area2 = box_area(boxes2)
- # boxes1: (..., N, 4) -> (..., N, 1, 2)
- # boxes2: (..., M, 4) -> (..., 1, M, 2)
- lt = torch.max(boxes1[..., :, None, :2], boxes2[..., None, :, :2])
- rb = torch.min(boxes1[..., :, None, 2:], boxes2[..., None, :, 2:])
- wh = (rb - lt).clamp(min=0) # (..., N, M, 2)
- inter = wh[..., 0] * wh[..., 1] # (..., N, M)
- union = area1[..., None] + area2[..., None, :] - inter
- iou = inter / union
- return iou, union
- def generalized_box_iou(boxes1, boxes2):
- """
- Batched version of Generalized IoU from https://giou.stanford.edu/
- Boxes should be in [x0, y0, x1, y1] format
- Inputs:
- - boxes1: Tensor of shape (..., N, 4)
- - boxes2: Tensor of shape (..., M, 4)
- Returns:
- - giou: Tensor of shape (..., N, M)
- """
- iou, union = box_iou(boxes1, boxes2)
- # boxes1: (..., N, 4) -> (..., N, 1, 2)
- # boxes2: (..., M, 4) -> (..., 1, M, 2)
- lt = torch.min(boxes1[..., :, None, :2], boxes2[..., None, :, :2])
- rb = torch.max(boxes1[..., :, None, 2:], boxes2[..., None, :, 2:])
- wh = (rb - lt).clamp(min=0) # (..., N, M, 2)
- area = wh[..., 0] * wh[..., 1] # (..., N, M)
- return iou - (area - union) / area
- @torch.jit.script
- def fast_diag_generalized_box_iou(boxes1, boxes2):
- assert len(boxes1) == len(boxes2)
- box1_xy = boxes1[:, 2:]
- box1_XY = boxes1[:, :2]
- box2_xy = boxes2[:, 2:]
- box2_XY = boxes2[:, :2]
- # assert (box1_xy >= box1_XY).all()
- # assert (box2_xy >= box2_XY).all()
- area1 = (box1_xy - box1_XY).prod(-1)
- area2 = (box2_xy - box2_XY).prod(-1)
- lt = torch.max(box1_XY, box2_XY) # [N,2]
- lt2 = torch.min(box1_XY, box2_XY)
- rb = torch.min(box1_xy, box2_xy) # [N,2]
- rb2 = torch.max(box1_xy, box2_xy)
- inter = (rb - lt).clamp(min=0).prod(-1)
- tot_area = (rb2 - lt2).clamp(min=0).prod(-1)
- union = area1 + area2 - inter
- iou = inter / union
- return iou - (tot_area - union) / tot_area
- @torch.jit.script
- def fast_diag_box_iou(boxes1, boxes2):
- assert len(boxes1) == len(boxes2)
- box1_xy = boxes1[:, 2:]
- box1_XY = boxes1[:, :2]
- box2_xy = boxes2[:, 2:]
- box2_XY = boxes2[:, :2]
- # assert (box1_xy >= box1_XY).all()
- # assert (box2_xy >= box2_XY).all()
- area1 = (box1_xy - box1_XY).prod(-1)
- area2 = (box2_xy - box2_XY).prod(-1)
- lt = torch.max(box1_XY, box2_XY) # [N,2]
- rb = torch.min(box1_xy, box2_xy) # [N,2]
- inter = (rb - lt).clamp(min=0).prod(-1)
- union = area1 + area2 - inter
- iou = inter / union
- return iou
- def box_xywh_inter_union(
- boxes1: torch.Tensor, boxes2: torch.Tensor
- ) -> Tuple[torch.Tensor, torch.Tensor]:
- # Asuumes boxes in xywh format
- assert boxes1.size(-1) == 4 and boxes2.size(-1) == 4
- boxes1 = box_xywh_to_xyxy(boxes1)
- boxes2 = box_xywh_to_xyxy(boxes2)
- box1_tl_xy = boxes1[..., :2]
- box1_br_xy = boxes1[..., 2:]
- box2_tl_xy = boxes2[..., :2]
- box2_br_xy = boxes2[..., 2:]
- area1 = (box1_br_xy - box1_tl_xy).prod(-1)
- area2 = (box2_br_xy - box2_tl_xy).prod(-1)
- assert (area1 >= 0).all() and (area2 >= 0).all()
- tl = torch.max(box1_tl_xy, box2_tl_xy)
- br = torch.min(box1_br_xy, box2_br_xy)
- inter = (br - tl).clamp(min=0).prod(-1)
- union = area1 + area2 - inter
- return inter, union
|