eval.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277
  1. # fmt: off
  2. # flake8: noqa
  3. # pyre-unsafe
  4. import copy
  5. import os
  6. import pickle
  7. import time
  8. import traceback
  9. from functools import partial
  10. from multiprocessing.pool import Pool
  11. import numpy as np
  12. from . import _timing, utils
  13. from .config import get_default_eval_config, init_config
  14. from .utils import TrackEvalException
  15. class Evaluator:
  16. """Evaluator class for evaluating different metrics for each datasets."""
  17. def __init__(self, config=None):
  18. """Initialize the evaluator with a config file."""
  19. self.config = init_config(config, get_default_eval_config(), "Eval")
  20. # Only run timing analysis if not run in parallel.
  21. if self.config["TIME_PROGRESS"] and not self.config["USE_PARALLEL"]:
  22. _timing.DO_TIMING = True
  23. if self.config["DISPLAY_LESS_PROGRESS"]:
  24. _timing.DISPLAY_LESS_PROGRESS = True
  25. @_timing.time
  26. def evaluate(self, dataset_list, metrics_list):
  27. """Evaluate a set of metrics on a set of datasets."""
  28. config = self.config
  29. metrics_list = metrics_list
  30. metric_names = utils.validate_metrics_list(metrics_list)
  31. dataset_names = [dataset.get_name() for dataset in dataset_list]
  32. output_res = {}
  33. output_msg = {}
  34. for dataset, dname in zip(dataset_list, dataset_names):
  35. # Get dataset info about what to evaluate
  36. output_res[dname] = {}
  37. output_msg[dname] = {}
  38. tracker_list, seq_list, class_list = dataset.get_eval_info()
  39. print(
  40. f"\nEvaluating {len(tracker_list)} tracker(s) on "
  41. f"{len(seq_list)} sequence(s) for {len(class_list)} class(es)"
  42. f" on {dname} dataset using the following "
  43. f'metrics: {", ".join(metric_names)}\n'
  44. )
  45. # Evaluate each tracker
  46. for tracker in tracker_list:
  47. try:
  48. output_res, output_msg = self.evaluate_tracker(
  49. tracker,
  50. dataset,
  51. dname,
  52. class_list,
  53. metrics_list,
  54. metric_names,
  55. seq_list,
  56. output_res,
  57. output_msg,
  58. )
  59. except Exception as err:
  60. output_res[dname][tracker] = None
  61. if type(err) == TrackEvalException:
  62. output_msg[dname][tracker] = str(err)
  63. else:
  64. output_msg[dname][tracker] = "Unknown error occurred."
  65. print("Tracker %s was unable to be evaluated." % tracker)
  66. print(err)
  67. traceback.print_exc()
  68. if config["LOG_ON_ERROR"] is not None:
  69. with open(config["LOG_ON_ERROR"], "a") as f:
  70. print(dname, file=f)
  71. print(tracker, file=f)
  72. print(traceback.format_exc(), file=f)
  73. print("\n\n\n", file=f)
  74. if config["BREAK_ON_ERROR"]:
  75. raise err
  76. elif config["RETURN_ON_ERROR"]:
  77. return output_res, output_msg
  78. return output_res, output_msg
  79. def evaluate_tracker(
  80. self,
  81. tracker,
  82. dataset,
  83. dname,
  84. class_list,
  85. metrics_list,
  86. metric_names,
  87. seq_list,
  88. output_res,
  89. output_msg,
  90. ):
  91. """Evaluate each sequence in parallel or in series."""
  92. print("\nEvaluating %s\n" % tracker)
  93. time_start = time.time()
  94. config = self.config
  95. if config["USE_PARALLEL"]:
  96. with Pool(config["NUM_PARALLEL_CORES"]) as pool:
  97. _eval_sequence = partial(
  98. eval_sequence,
  99. dataset=dataset,
  100. tracker=tracker,
  101. class_list=class_list,
  102. metrics_list=metrics_list,
  103. metric_names=metric_names,
  104. )
  105. results = pool.map(_eval_sequence, seq_list)
  106. res = dict(zip(seq_list, results))
  107. else:
  108. res = {}
  109. for curr_seq in sorted(seq_list):
  110. res[curr_seq] = eval_sequence(
  111. curr_seq, dataset, tracker, class_list, metrics_list, metric_names
  112. )
  113. # collecting combined cls keys (cls averaged, det averaged, super classes)
  114. cls_keys = []
  115. res["COMBINED_SEQ"] = {}
  116. # combine sequences for each class
  117. for c_cls in class_list:
  118. res["COMBINED_SEQ"][c_cls] = {}
  119. for metric, mname in zip(metrics_list, metric_names):
  120. curr_res = {
  121. seq_key: seq_value[c_cls][mname]
  122. for seq_key, seq_value in res.items()
  123. if seq_key != "COMBINED_SEQ"
  124. }
  125. # combine results over all sequences and then over all classes
  126. res["COMBINED_SEQ"][c_cls][mname] = metric.combine_sequences(curr_res)
  127. # combine classes
  128. if dataset.should_classes_combine:
  129. if config["OUTPUT_PER_SEQ_RES"]:
  130. video_keys = res.keys()
  131. else:
  132. video_keys = ["COMBINED_SEQ"]
  133. for v_key in video_keys:
  134. cls_keys += ["average"]
  135. res[v_key]["average"] = {}
  136. for metric, mname in zip(metrics_list, metric_names):
  137. cls_res = {
  138. cls_key: cls_value[mname]
  139. for cls_key, cls_value in res[v_key].items()
  140. if cls_key not in cls_keys
  141. }
  142. res[v_key]["average"][
  143. mname
  144. ] = metric.combine_classes_class_averaged(
  145. cls_res, ignore_empty=True
  146. )
  147. # combine classes to super classes
  148. if dataset.use_super_categories:
  149. for cat, sub_cats in dataset.super_categories.items():
  150. cls_keys.append(cat)
  151. res["COMBINED_SEQ"][cat] = {}
  152. for metric, mname in zip(metrics_list, metric_names):
  153. cat_res = {
  154. cls_key: cls_value[mname]
  155. for cls_key, cls_value in res["COMBINED_SEQ"].items()
  156. if cls_key in sub_cats
  157. }
  158. res["COMBINED_SEQ"][cat][
  159. mname
  160. ] = metric.combine_classes_det_averaged(cat_res)
  161. # Print and output results in various formats
  162. if config["TIME_PROGRESS"]:
  163. print(
  164. f"\nAll sequences for {tracker} finished in"
  165. f" {time.time() - time_start} seconds"
  166. )
  167. output_fol = dataset.get_output_fol(tracker)
  168. os.makedirs(output_fol, exist_ok=True)
  169. # take a mean of each field of each thr
  170. if config["OUTPUT_PER_SEQ_RES"]:
  171. all_res = copy.deepcopy(res)
  172. summary_keys = res.keys()
  173. else:
  174. all_res = copy.deepcopy(res["COMBINED_SEQ"])
  175. summary_keys = ["COMBINED_SEQ"]
  176. thr_key_list = [50]
  177. for s_key in summary_keys:
  178. for metric, mname in zip(metrics_list, metric_names):
  179. if mname != "TETA":
  180. if s_key == "COMBINED_SEQ":
  181. metric.print_table(
  182. {"COMBINED_SEQ": res["COMBINED_SEQ"][cls_keys[0]][mname]},
  183. tracker,
  184. cls_keys[0],
  185. )
  186. continue
  187. for c_cls in res[s_key].keys():
  188. for thr in thr_key_list:
  189. all_res[s_key][c_cls][mname][thr] = metric._summary_row(
  190. res[s_key][c_cls][mname][thr]
  191. )
  192. x = (
  193. np.array(list(all_res[s_key][c_cls]["TETA"].values()))
  194. .astype("float")
  195. .mean(axis=0)
  196. )
  197. all_res_summary = list(x.round(decimals=2).astype("str"))
  198. all_res[s_key][c_cls][mname]["ALL"] = all_res_summary
  199. if config["OUTPUT_SUMMARY"] and s_key == "COMBINED_SEQ":
  200. for t in thr_key_list:
  201. metric.print_summary_table(
  202. all_res[s_key][cls_keys[0]][mname][t],
  203. t,
  204. tracker,
  205. cls_keys[0],
  206. )
  207. if config["OUTPUT_TEM_RAW_DATA"]:
  208. out_file = os.path.join(output_fol, "teta_summary_results.pth")
  209. pickle.dump(all_res, open(out_file, "wb"))
  210. print("Saved the TETA summary results.")
  211. # output
  212. output_res[dname][mname] = all_res[s_key][cls_keys[0]][mname][t]
  213. output_msg[dname][tracker] = "Success"
  214. return output_res, output_msg
  215. @_timing.time
  216. def eval_sequence(seq, dataset, tracker, class_list, metrics_list, metric_names):
  217. """Function for evaluating a single sequence."""
  218. raw_data = dataset.get_raw_seq_data(tracker, seq)
  219. seq_res = {}
  220. if "TETA" in metric_names:
  221. thresholds = [50]
  222. data_all_class = dataset.get_preprocessed_seq_data(
  223. raw_data, "all", thresholds=thresholds
  224. )
  225. teta = metrics_list[metric_names.index("TETA")]
  226. assignment = teta.compute_global_assignment(data_all_class)
  227. # create a dict to save Cls_FP for each class in different thr.
  228. cls_fp = {
  229. key: {
  230. cls: np.zeros((len(np.arange(0.5, 0.99, 0.05)))) for cls in class_list
  231. }
  232. for key in thresholds
  233. }
  234. for cls in class_list:
  235. seq_res[cls] = {}
  236. data = dataset.get_preprocessed_seq_data(raw_data, cls, assignment, thresholds)
  237. for metric, mname in zip(metrics_list, metric_names):
  238. if mname == "TETA":
  239. seq_res[cls][mname], cls_fp, _ = metric.eval_sequence(
  240. data, cls, dataset.clsid2cls_name, cls_fp
  241. )
  242. else:
  243. seq_res[cls][mname] = metric.eval_sequence(data)
  244. if "TETA" in metric_names:
  245. for thr in thresholds:
  246. for cls in class_list:
  247. seq_res[cls]["TETA"][thr]["Cls_FP"] += cls_fp[thr][cls]
  248. return seq_res