| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658 |
- # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
- # pyre-unsafe
- """
- This evaluator is based upon COCO evaluation, but evaluates the model in a "demo" setting.
- This means that the model's predictions are thresholded and evaluated as "hard" predictions.
- """
- import logging
- from typing import Optional
- import numpy as np
- import pycocotools.mask as maskUtils
- from pycocotools.cocoeval import COCOeval
- from sam3.eval.coco_eval import CocoEvaluator
- from sam3.train.masks_ops import compute_F_measure
- from sam3.train.utils.distributed import is_main_process
- from scipy.optimize import linear_sum_assignment
- class DemoEval(COCOeval):
- """
- This evaluator is based upon COCO evaluation, but evaluates the model in a "demo" setting.
- This means that the model's predictions are thresholded and evaluated as "hard" predictions.
- """
- def __init__(
- self,
- coco_gt=None,
- coco_dt=None,
- iouType="bbox",
- threshold=0.5,
- compute_JnF=False,
- ):
- """
- Args:
- coco_gt (COCO): ground truth COCO API
- coco_dt (COCO): detections COCO API
- iou_type (str): type of IoU to evaluate
- threshold (float): threshold for predictions
- """
- super().__init__(coco_gt, coco_dt, iouType)
- self.threshold = threshold
- self.params.useCats = False
- self.params.areaRng = [[0**2, 1e5**2]]
- self.params.areaRngLbl = ["all"]
- self.params.maxDets = [100000]
- self.compute_JnF = compute_JnF
- def computeIoU(self, imgId, catId):
- # Same as the original COCOeval.computeIoU, but without sorting
- p = self.params
- if p.useCats:
- gt = self._gts[imgId, catId]
- dt = self._dts[imgId, catId]
- else:
- gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
- dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
- if len(gt) == 0 and len(dt) == 0:
- return []
- if p.iouType == "segm":
- g = [g["segmentation"] for g in gt]
- d = [d["segmentation"] for d in dt]
- elif p.iouType == "bbox":
- g = [g["bbox"] for g in gt]
- d = [d["bbox"] for d in dt]
- else:
- raise Exception("unknown iouType for iou computation")
- # compute iou between each dt and gt region
- iscrowd = [int(o["iscrowd"]) for o in gt]
- ious = maskUtils.iou(d, g, iscrowd)
- return ious
- def evaluateImg(self, imgId, catId, aRng, maxDet):
- """
- perform evaluation for single category and image
- :return: dict (single image results)
- """
- p = self.params
- assert not p.useCats, "This evaluator does not support per-category evaluation."
- assert catId == -1
- all_gts = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
- keep_gt = np.array([not g["ignore"] for g in all_gts], dtype=bool)
- gt = [g for g in all_gts if not g["ignore"]]
- all_dts = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]
- keep_dt = np.array([d["score"] >= self.threshold for d in all_dts], dtype=bool)
- dt = [d for d in all_dts if d["score"] >= self.threshold]
- if len(gt) == 0 and len(dt) == 0:
- # This is a "true negative" case, where there are no GTs and no predictions
- # The box-level metrics are ill-defined, so we don't add them to this dict
- return {
- "image_id": imgId,
- "IL_TP": 0,
- "IL_TN": 1,
- "IL_FP": 0,
- "IL_FN": 0,
- "IL_perfect_neg": np.ones((len(p.iouThrs),), dtype=np.int64),
- "num_dt": len(dt),
- }
- if len(gt) > 0 and len(dt) == 0:
- # This is a "false negative" case, where there are GTs but no predictions
- return {
- "image_id": imgId,
- "IL_TP": 0,
- "IL_TN": 0,
- "IL_FP": 0,
- "IL_FN": 1,
- "TPs": np.zeros((len(p.iouThrs),), dtype=np.int64),
- "FPs": np.zeros((len(p.iouThrs),), dtype=np.int64),
- "FNs": np.ones((len(p.iouThrs),), dtype=np.int64) * len(gt),
- "local_F1s": np.zeros((len(p.iouThrs),), dtype=np.int64),
- "local_positive_F1s": np.zeros((len(p.iouThrs),), dtype=np.int64),
- "IL_perfect_pos": np.zeros((len(p.iouThrs),), dtype=np.int64),
- "num_dt": len(dt),
- }
- # Load pre-computed ious
- ious = self.ious[(imgId, catId)]
- # compute matching
- if len(ious) == 0:
- ious = np.zeros((len(dt), len(gt)))
- else:
- ious = ious[keep_dt, :][:, keep_gt]
- assert ious.shape == (len(dt), len(gt))
- matched_dt, matched_gt = linear_sum_assignment(-ious)
- match_scores = ious[matched_dt, matched_gt]
- if self.compute_JnF and len(match_scores) > 0:
- j_score = match_scores.mean()
- f_measure = 0
- for dt_id, gt_id in zip(matched_dt, matched_gt):
- f_measure += compute_F_measure(
- gt_boundary_rle=gt[gt_id]["boundary"],
- gt_dilated_boundary_rle=gt[gt_id]["dilated_boundary"],
- dt_boundary_rle=dt[dt_id]["boundary"],
- dt_dilated_boundary_rle=dt[dt_id]["dilated_boundary"],
- )
- f_measure /= len(match_scores) + 1e-9
- JnF = (j_score + f_measure) * 0.5
- else:
- j_score = f_measure = JnF = -1
- TPs, FPs, FNs = [], [], []
- IL_perfect = []
- for thresh in p.iouThrs:
- TP = (match_scores >= thresh).sum()
- FP = len(dt) - TP
- FN = len(gt) - TP
- assert FP >= 0 and FN >= 0, (
- f"FP: {FP}, FN: {FN}, TP: {TP}, match_scores: {match_scores}, len(dt): {len(dt)}, len(gt): {len(gt)}, ious: {ious}"
- )
- TPs.append(TP)
- FPs.append(FP)
- FNs.append(FN)
- if FP == FN and FP == 0:
- IL_perfect.append(1)
- else:
- IL_perfect.append(0)
- TPs = np.array(TPs, dtype=np.int64)
- FPs = np.array(FPs, dtype=np.int64)
- FNs = np.array(FNs, dtype=np.int64)
- IL_perfect = np.array(IL_perfect, dtype=np.int64)
- # compute precision recall and F1
- precision = TPs / (TPs + FPs + 1e-4)
- assert np.all(precision <= 1)
- recall = TPs / (TPs + FNs + 1e-4)
- assert np.all(recall <= 1)
- F1 = 2 * precision * recall / (precision + recall + 1e-4)
- result = {
- "image_id": imgId,
- "TPs": TPs,
- "FPs": FPs,
- "FNs": FNs,
- "local_F1s": F1,
- "IL_TP": (len(gt) > 0) and (len(dt) > 0),
- "IL_FP": (len(gt) == 0) and (len(dt) > 0),
- "IL_TN": (len(gt) == 0) and (len(dt) == 0),
- "IL_FN": (len(gt) > 0) and (len(dt) == 0),
- ("IL_perfect_pos" if len(gt) > 0 else "IL_perfect_neg"): IL_perfect,
- "F": f_measure,
- "J": j_score,
- "J&F": JnF,
- "num_dt": len(dt),
- }
- if len(gt) > 0 and len(dt) > 0:
- result["local_positive_F1s"] = F1
- return result
- def accumulate(self, p=None):
- """
- Accumulate per image evaluation results and store the result in self.eval
- :param p: input params for evaluation
- :return: None
- """
- if not self.evalImgs:
- print("Please run evaluate() first")
- # allows input customized parameters
- if p is None:
- p = self.params
- setImgIds = set(p.imgIds)
- # TPs, FPs, FNs
- TPs = np.zeros((len(p.iouThrs),), dtype=np.int64)
- FPs = np.zeros((len(p.iouThrs),), dtype=np.int64)
- pmFPs = np.zeros((len(p.iouThrs),), dtype=np.int64)
- FNs = np.zeros((len(p.iouThrs),), dtype=np.int64)
- local_F1s = np.zeros((len(p.iouThrs),), dtype=np.float64)
- # Image level metrics
- IL_TPs = 0
- IL_FPs = 0
- IL_TNs = 0
- IL_FNs = 0
- IL_perfects_neg = np.zeros((len(p.iouThrs),), dtype=np.int64)
- IL_perfects_pos = np.zeros((len(p.iouThrs),), dtype=np.int64)
- # JnF metric
- total_J = 0
- total_F = 0
- total_JnF = 0
- valid_img_count = 0
- total_pos_count = 0
- total_neg_count = 0
- valid_J_count = 0
- valid_F1_count = 0
- valid_F1_count_w0dt = 0
- for res in self.evalImgs:
- if res["image_id"] not in setImgIds:
- continue
- IL_TPs += res["IL_TP"]
- IL_FPs += res["IL_FP"]
- IL_TNs += res["IL_TN"]
- IL_FNs += res["IL_FN"]
- if "IL_perfect_neg" in res:
- IL_perfects_neg += res["IL_perfect_neg"]
- total_neg_count += 1
- else:
- assert "IL_perfect_pos" in res
- IL_perfects_pos += res["IL_perfect_pos"]
- total_pos_count += 1
- if "TPs" not in res:
- continue
- TPs += res["TPs"]
- FPs += res["FPs"]
- FNs += res["FNs"]
- valid_img_count += 1
- if "local_positive_F1s" in res:
- local_F1s += res["local_positive_F1s"]
- pmFPs += res["FPs"]
- valid_F1_count_w0dt += 1
- if res["num_dt"] > 0:
- valid_F1_count += 1
- if "J" in res and res["J"] > -1e-9:
- total_J += res["J"]
- total_F += res["F"]
- total_JnF += res["J&F"]
- valid_J_count += 1
- # compute precision recall and F1
- precision = TPs / (TPs + FPs + 1e-4)
- positive_micro_precision = TPs / (TPs + pmFPs + 1e-4)
- assert np.all(precision <= 1)
- recall = TPs / (TPs + FNs + 1e-4)
- assert np.all(recall <= 1)
- F1 = 2 * precision * recall / (precision + recall + 1e-4)
- positive_micro_F1 = (
- 2
- * positive_micro_precision
- * recall
- / (positive_micro_precision + recall + 1e-4)
- )
- IL_rec = IL_TPs / (IL_TPs + IL_FNs + 1e-6)
- IL_prec = IL_TPs / (IL_TPs + IL_FPs + 1e-6)
- IL_F1 = 2 * IL_prec * IL_rec / (IL_prec + IL_rec + 1e-6)
- IL_FPR = IL_FPs / (IL_FPs + IL_TNs + 1e-6)
- IL_MCC = float(IL_TPs * IL_TNs - IL_FPs * IL_FNs) / (
- (
- float(IL_TPs + IL_FPs)
- * float(IL_TPs + IL_FNs)
- * float(IL_TNs + IL_FPs)
- * float(IL_TNs + IL_FNs)
- )
- ** 0.5
- + 1e-6
- )
- IL_perfect_pos = IL_perfects_pos / (total_pos_count + 1e-9)
- IL_perfect_neg = IL_perfects_neg / (total_neg_count + 1e-9)
- total_J = total_J / (valid_J_count + 1e-9)
- total_F = total_F / (valid_J_count + 1e-9)
- total_JnF = total_JnF / (valid_J_count + 1e-9)
- self.eval = {
- "params": p,
- "TPs": TPs,
- "FPs": FPs,
- "positive_micro_FPs": pmFPs,
- "FNs": FNs,
- "precision": precision,
- "positive_micro_precision": positive_micro_precision,
- "recall": recall,
- "F1": F1,
- "positive_micro_F1": positive_micro_F1,
- "positive_macro_F1": local_F1s / valid_F1_count,
- "positive_w0dt_macro_F1": local_F1s / valid_F1_count_w0dt,
- "IL_recall": IL_rec,
- "IL_precision": IL_prec,
- "IL_F1": IL_F1,
- "IL_FPR": IL_FPR,
- "IL_MCC": IL_MCC,
- "IL_perfect_pos": IL_perfect_pos,
- "IL_perfect_neg": IL_perfect_neg,
- "J": total_J,
- "F": total_F,
- "J&F": total_JnF,
- }
- self.eval["CGF1"] = self.eval["positive_macro_F1"] * self.eval["IL_MCC"]
- self.eval["CGF1_w0dt"] = (
- self.eval["positive_w0dt_macro_F1"] * self.eval["IL_MCC"]
- )
- self.eval["CGF1_micro"] = self.eval["positive_micro_F1"] * self.eval["IL_MCC"]
- def summarize(self):
- """
- Compute and display summary metrics for evaluation results.
- Note this functin can *only* be applied on the default parameter setting
- """
- if not self.eval:
- raise Exception("Please run accumulate() first")
- def _summarize(iouThr=None, metric=""):
- p = self.params
- iStr = " {:<18} @[ IoU={:<9}] = {:0.3f}"
- titleStr = "Average " + metric
- iouStr = (
- "{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1])
- if iouThr is None
- else "{:0.2f}".format(iouThr)
- )
- s = self.eval[metric]
- # IoU
- if iouThr is not None:
- t = np.where(iouThr == p.iouThrs)[0]
- s = s[t]
- if len(s[s > -1]) == 0:
- mean_s = -1
- else:
- mean_s = np.mean(s[s > -1])
- print(iStr.format(titleStr, iouStr, mean_s))
- return mean_s
- def _summarize_single(metric=""):
- titleStr = "Average " + metric
- iStr = " {:<35} = {:0.3f}"
- s = self.eval[metric]
- print(iStr.format(titleStr, s))
- return s
- def _summarizeDets():
- # note: the index of these metrics are also used in video Demo F1 evaluation
- # when adding new metrics, please update the index in video Demo F1 evaluation
- # in "evaluate" method of the "VideoDemoF1Evaluator" class
- stats = np.zeros((len(DEMO_METRICS),))
- stats[0] = _summarize(metric="CGF1")
- stats[1] = _summarize(metric="precision")
- stats[2] = _summarize(metric="recall")
- stats[3] = _summarize(metric="F1")
- stats[4] = _summarize(metric="positive_macro_F1")
- stats[5] = _summarize_single(metric="IL_precision")
- stats[6] = _summarize_single(metric="IL_recall")
- stats[7] = _summarize_single(metric="IL_F1")
- stats[8] = _summarize_single(metric="IL_FPR")
- stats[9] = _summarize_single(metric="IL_MCC")
- stats[10] = _summarize(metric="IL_perfect_pos")
- stats[11] = _summarize(metric="IL_perfect_neg")
- stats[12] = _summarize(iouThr=0.5, metric="CGF1")
- stats[13] = _summarize(iouThr=0.5, metric="precision")
- stats[14] = _summarize(iouThr=0.5, metric="recall")
- stats[15] = _summarize(iouThr=0.5, metric="F1")
- stats[16] = _summarize(iouThr=0.5, metric="positive_macro_F1")
- stats[17] = _summarize(iouThr=0.5, metric="IL_perfect_pos")
- stats[18] = _summarize(iouThr=0.5, metric="IL_perfect_neg")
- stats[19] = _summarize(iouThr=0.75, metric="CGF1")
- stats[20] = _summarize(iouThr=0.75, metric="precision")
- stats[21] = _summarize(iouThr=0.75, metric="recall")
- stats[22] = _summarize(iouThr=0.75, metric="F1")
- stats[23] = _summarize(iouThr=0.75, metric="positive_macro_F1")
- stats[24] = _summarize(iouThr=0.75, metric="IL_perfect_pos")
- stats[25] = _summarize(iouThr=0.75, metric="IL_perfect_neg")
- stats[26] = _summarize_single(metric="J")
- stats[27] = _summarize_single(metric="F")
- stats[28] = _summarize_single(metric="J&F")
- stats[29] = _summarize(metric="CGF1_micro")
- stats[30] = _summarize(metric="positive_micro_precision")
- stats[31] = _summarize(metric="positive_micro_F1")
- stats[32] = _summarize(iouThr=0.5, metric="CGF1_micro")
- stats[33] = _summarize(iouThr=0.5, metric="positive_micro_precision")
- stats[34] = _summarize(iouThr=0.5, metric="positive_micro_F1")
- stats[35] = _summarize(iouThr=0.75, metric="CGF1_micro")
- stats[36] = _summarize(iouThr=0.75, metric="positive_micro_precision")
- stats[37] = _summarize(iouThr=0.75, metric="positive_micro_F1")
- stats[38] = _summarize(metric="CGF1_w0dt")
- stats[39] = _summarize(metric="positive_w0dt_macro_F1")
- stats[40] = _summarize(iouThr=0.5, metric="CGF1_w0dt")
- stats[41] = _summarize(iouThr=0.5, metric="positive_w0dt_macro_F1")
- stats[42] = _summarize(iouThr=0.75, metric="CGF1_w0dt")
- stats[43] = _summarize(iouThr=0.75, metric="positive_w0dt_macro_F1")
- return stats
- summarize = _summarizeDets
- self.stats = summarize()
- DEMO_METRICS = [
- "CGF1",
- "Precision",
- "Recall",
- "F1",
- "Macro_F1",
- "IL_Precision",
- "IL_Recall",
- "IL_F1",
- "IL_FPR",
- "IL_MCC",
- "IL_perfect_pos",
- "IL_perfect_neg",
- "CGF1@0.5",
- "Precision@0.5",
- "Recall@0.5",
- "F1@0.5",
- "Macro_F1@0.5",
- "IL_perfect_pos@0.5",
- "IL_perfect_neg@0.5",
- "CGF1@0.75",
- "Precision@0.75",
- "Recall@0.75",
- "F1@0.75",
- "Macro_F1@0.75",
- "IL_perfect_pos@0.75",
- "IL_perfect_neg@0.75",
- "J",
- "F",
- "J&F",
- "CGF1_micro",
- "positive_micro_Precision",
- "positive_micro_F1",
- "CGF1_micro@0.5",
- "positive_micro_Precision@0.5",
- "positive_micro_F1@0.5",
- "CGF1_micro@0.75",
- "positive_micro_Precision@0.75",
- "positive_micro_F1@0.75",
- "CGF1_w0dt",
- "positive_w0dt_macro_F1",
- "CGF1_w0dt@0.5",
- "positive_w0dt_macro_F1@0.5",
- "CGF1_w0dt@0.75",
- "positive_w0dt_macro_F1@0.75",
- ]
- class DemoEvaluator(CocoEvaluator):
- def __init__(
- self,
- coco_gt,
- iou_types,
- dump_dir: Optional[str],
- postprocessor,
- threshold=0.5,
- average_by_rarity=False,
- gather_pred_via_filesys=False,
- exhaustive_only=False,
- all_exhaustive_only=True,
- compute_JnF=False,
- metrics_dump_dir: Optional[str] = None,
- ):
- self.iou_types = iou_types
- self.threshold = threshold
- super().__init__(
- coco_gt=coco_gt,
- iou_types=iou_types,
- useCats=False,
- dump_dir=dump_dir,
- postprocessor=postprocessor,
- # average_by_rarity=average_by_rarity,
- gather_pred_via_filesys=gather_pred_via_filesys,
- exhaustive_only=exhaustive_only,
- all_exhaustive_only=all_exhaustive_only,
- metrics_dump_dir=metrics_dump_dir,
- )
- self.use_self_evaluate = True
- self.compute_JnF = compute_JnF
- def _lazy_init(self):
- if self.initialized:
- return
- super()._lazy_init()
- self.use_self_evaluate = True
- self.reset()
- def select_best_scoring(self, scorings):
- # This function is used for "oracle" type evaluation.
- # It accepts the evaluation results with respect to several ground truths, and picks the best
- if len(scorings) == 1:
- return scorings[0]
- assert scorings[0].ndim == 3, (
- f"Expecting results in [numCats, numAreas, numImgs] format, got {scorings[0].shape}"
- )
- assert scorings[0].shape[0] == 1, (
- f"Expecting a single category, got {scorings[0].shape[0]}"
- )
- for scoring in scorings:
- assert scoring.shape == scorings[0].shape, (
- f"Shape mismatch: {scoring.shape}, {scorings[0].shape}"
- )
- selected_imgs = []
- for img_id in range(scorings[0].shape[-1]):
- best = scorings[0][:, :, img_id]
- for scoring in scorings[1:]:
- current = scoring[:, :, img_id]
- if "local_F1s" in best[0, 0] and "local_F1s" in current[0, 0]:
- # we were able to compute a F1 score for this particular image in both evaluations
- # best["local_F1s"] contains the results at various IoU thresholds. We simply take the average for comparision
- best_score = best[0, 0]["local_F1s"].mean()
- current_score = current[0, 0]["local_F1s"].mean()
- if current_score > best_score:
- best = current
- else:
- # If we're here, it means that in that in some evaluation we were not able to get a valid local F1
- # This happens when both the predictions and targets are empty. In that case, we can assume it's a perfect prediction
- if "local_F1s" not in current[0, 0]:
- best = current
- selected_imgs.append(best)
- result = np.stack(selected_imgs, axis=-1)
- assert result.shape == scorings[0].shape
- return result
- def summarize(self):
- self._lazy_init()
- logging.info("Demo evaluator: Summarizing")
- if not is_main_process():
- return {}
- outs = {}
- prefix = "oracle_" if len(self.coco_evals) > 1 else ""
- # if self.rarity_buckets is None:
- self.accumulate(self.eval_img_ids)
- for iou_type, coco_eval in self.coco_evals[0].items():
- print("Demo metric, IoU type={}".format(iou_type))
- coco_eval.summarize()
- if "bbox" in self.coco_evals[0]:
- for i, value in enumerate(self.coco_evals[0]["bbox"].stats):
- outs[f"coco_eval_bbox_{prefix}{DEMO_METRICS[i]}"] = value
- if "segm" in self.coco_evals[0]:
- for i, value in enumerate(self.coco_evals[0]["segm"].stats):
- outs[f"coco_eval_masks_{prefix}{DEMO_METRICS[i]}"] = value
- # else:
- # total_stats = {}
- # for bucket, img_list in self.rarity_buckets.items():
- # self.accumulate(imgIds=img_list)
- # bucket_name = RARITY_BUCKETS[bucket]
- # for iou_type, coco_eval in self.coco_evals[0].items():
- # print(
- # "Demo metric, IoU type={}, Rarity bucket={}".format(
- # iou_type, bucket_name
- # )
- # )
- # coco_eval.summarize()
- # if "bbox" in self.coco_evals[0]:
- # if "bbox" not in total_stats:
- # total_stats["bbox"] = np.zeros_like(
- # self.coco_evals[0]["bbox"].stats
- # )
- # total_stats["bbox"] += self.coco_evals[0]["bbox"].stats
- # for i, value in enumerate(self.coco_evals[0]["bbox"].stats):
- # outs[
- # f"coco_eval_bbox_{bucket_name}_{prefix}{DEMO_METRICS[i]}"
- # ] = value
- # if "segm" in self.coco_evals[0]:
- # if "segm" not in total_stats:
- # total_stats["segm"] = np.zeros_like(
- # self.coco_evals[0]["segm"].stats
- # )
- # total_stats["segm"] += self.coco_evals[0]["segm"].stats
- # for i, value in enumerate(self.coco_evals[0]["segm"].stats):
- # outs[
- # f"coco_eval_masks_{bucket_name}_{prefix}{DEMO_METRICS[i]}"
- # ] = value
- # if "bbox" in total_stats:
- # total_stats["bbox"] /= len(self.rarity_buckets)
- # for i, value in enumerate(total_stats["bbox"]):
- # outs[f"coco_eval_bbox_{prefix}{DEMO_METRICS[i]}"] = value
- # if "segm" in total_stats:
- # total_stats["segm"] /= len(self.rarity_buckets)
- # for i, value in enumerate(total_stats["segm"]):
- # outs[f"coco_eval_masks_{prefix}{DEMO_METRICS[i]}"] = value
- return outs
- def accumulate(self, imgIds=None):
- self._lazy_init()
- logging.info(
- f"demo evaluator: Accumulating on {len(imgIds) if imgIds is not None else 'all'} images"
- )
- if not is_main_process():
- return
- if imgIds is not None:
- for coco_eval in self.coco_evals[0].values():
- coco_eval.params.imgIds = list(imgIds)
- for coco_eval in self.coco_evals[0].values():
- coco_eval.accumulate()
- def reset(self):
- self.coco_evals = [{} for _ in range(len(self.coco_gts))]
- for i, coco_gt in enumerate(self.coco_gts):
- for iou_type in self.iou_types:
- self.coco_evals[i][iou_type] = DemoEval(
- coco_gt=coco_gt,
- iouType=iou_type,
- threshold=self.threshold,
- compute_JnF=self.compute_JnF,
- )
- self.coco_evals[i][iou_type].useCats = False
- self.img_ids = []
- self.eval_imgs = {k: [] for k in self.iou_types}
- if self.dump is not None:
- self.dump = []
|