| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914 |
- # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved
- # pyre-unsafe
- """
- COCO evaluator that works in distributed mode.
- Mostly copy-paste from https://github.com/pytorch/vision/blob/edfd5a7/references/detection/coco_eval.py
- The difference is that there is less copy-pasting from pycocotools
- in the end of the file, as python3 can suppress prints with contextlib
- """
- import contextlib
- import copy
- import json
- import logging
- import os
- import pickle
- from collections import defaultdict
- from pathlib import Path
- from typing import Any, List, Optional
- import numpy as np
- import pycocotools.mask as mask_utils
- import torch
- from iopath.common.file_io import g_pathmgr
- from pycocotools.coco import COCO
- from pycocotools.cocoeval import COCOeval
- from sam3.train.masks_ops import rle_encode
- from sam3.train.utils.distributed import (
- all_gather,
- gather_to_rank_0_via_filesys,
- get_rank,
- is_main_process,
- )
- RARITY_BUCKETS = {0: "frequent", 1: "common", 2: "medium", 3: "rare"}
- class CocoEvaluator:
- def __init__(
- self,
- coco_gt,
- iou_types: List[str],
- useCats: bool,
- dump_dir: Optional[str],
- postprocessor,
- average_by_rarity=False,
- metrics_dump_dir: Optional[str] = None,
- gather_pred_via_filesys=False,
- use_normalized_areas=True,
- maxdets=[1, 10, 100],
- exhaustive_only=False,
- all_exhaustive_only=True,
- ):
- """Online coco evaluator. It will evaluate images as they are generated by the model, then accumulate/summarize at the end
- Args:
- - coco_gt: COCO api object containing the gt
- - iou_types: can be either "bbox" or "segm"
- - useCats: If true, categories will be used for evaluation
- - dump_dir: if non null, then the predictions will be dumped in that directory
- - postprocessor: Module to convert the model's output into the coco format
- - average_by_rarity: if true then we expect the images information in the gt dataset
- to have a "rarity" field. Then the AP will be computed on all rarity buckets
- individually, then averaged
- - gather_pred_via_filesys: if true, we use the filesystem for collective gathers
- - use_normalized_areas: if true, the areas of the objects in the GT are assumed to be
- normalized by the area of the image. In that case, the size buckets are adjusted
- - maxdets: maximal number of detections to be evaluated on each image.
- - exhaustive_only: If true, we restrict eval only to exhaustive annotations
- - all_exhaustive_only: If true, datapoints are restricted only to those with all exhaustive annotations
- """
- # coco_gt = copy.deepcopy(coco_gt)
- self.coco_gts = [coco_gt] if not isinstance(coco_gt, list) else coco_gt
- assert len(maxdets) == 3, f"expecting 3 detection threshold, got {len(maxdets)}"
- self.use_normalized_areas = use_normalized_areas
- self.iou_types = iou_types
- self.useCats = useCats
- self.maxdets = maxdets
- self.dump = None
- self.dump_dir = dump_dir
- if self.dump_dir is not None:
- self.dump = []
- if is_main_process():
- if not os.path.exists(self.dump_dir):
- os.makedirs(self.dump_dir, exist_ok=True)
- logging.info(f"Create the folder: {dump_dir}")
- self.initialized = False
- # Whether to gather predictions through filesystem (instead of torch
- # collective ops; requiring a shared filesystem across all ranks)
- self.gather_pred_via_filesys = gather_pred_via_filesys
- self.use_self_evaluate = True # CPP version is disabled
- self.postprocessor = postprocessor
- self.average_by_rarity = average_by_rarity
- self.exhaustive_only = exhaustive_only
- self.all_exhaustive_only = all_exhaustive_only
- self.metrics_dump_dir = metrics_dump_dir
- if self.metrics_dump_dir is not None:
- if is_main_process():
- if not os.path.exists(self.metrics_dump_dir):
- os.makedirs(self.metrics_dump_dir, exist_ok=True)
- logging.info(f"Create the folder: {metrics_dump_dir}")
- def _lazy_init(self, coco_cls=COCO):
- if self.initialized:
- return
- self.initialized = True
- self.coco_gts = [
- coco_cls(g_pathmgr.get_local_path(gt)) if isinstance(gt, str) else gt
- for gt in self.coco_gts
- ]
- self.reset()
- self.eval_img_ids = None
- if self.exhaustive_only:
- exclude_img_ids = set()
- # exclude_img_ids are the ids that are not exhaustively annotated in any of the other gts
- if self.all_exhaustive_only:
- for coco_gt in self.coco_gts[1:]:
- exclude_img_ids = exclude_img_ids.union(
- {
- img["id"]
- for img in coco_gt.dataset["images"]
- if not img["is_instance_exhaustive"]
- }
- )
- # we only eval on instance exhaustive queries
- self.eval_img_ids = [
- img["id"]
- for img in self.coco_gts[0].dataset["images"]
- if (img["is_instance_exhaustive"] and img["id"] not in exclude_img_ids)
- ]
- self.rarity_buckets = None
- if self.average_by_rarity:
- self.rarity_buckets = defaultdict(list)
- eval_img_ids_set = (
- set(self.eval_img_ids) if self.eval_img_ids is not None else None
- )
- for img in self.coco_gts[0].dataset["images"]:
- if self.eval_img_ids is not None and img["id"] not in eval_img_ids_set:
- continue
- self.rarity_buckets[img["rarity"]].append(img["id"])
- print("Rarity buckets sizes:")
- for k, v in self.rarity_buckets.items():
- print(f"{k}: {len(v)}")
- def set_sync_device(self, device: torch.device) -> Any:
- self._sync_device = device
- def _evaluate(self, *args, **kwargs):
- return evaluate(*args, **kwargs)
- def _loadRes(self, *args, **kwargs):
- return loadRes(*args, **kwargs)
- def update(self, *args, **kwargs):
- self._lazy_init()
- predictions = self.postprocessor.process_results(*args, **kwargs)
- img_ids = list(np.unique(list(predictions.keys())))
- self.img_ids.extend(img_ids)
- for iou_type in self.iou_types:
- results = self.prepare(predictions, iou_type)
- self._dump(results)
- assert len(self.coco_gts) == len(self.coco_evals)
- all_scorings = []
- for cur_coco_gt, cur_coco_eval in zip(self.coco_gts, self.coco_evals):
- # suppress pycocotools prints
- with open(os.devnull, "w") as devnull:
- with contextlib.redirect_stdout(devnull):
- coco_dt = (
- self._loadRes(cur_coco_gt, results) if results else COCO()
- )
- coco_eval = cur_coco_eval[iou_type]
- coco_eval.cocoDt = coco_dt
- coco_eval.params.imgIds = list(img_ids)
- coco_eval.params.useCats = self.useCats
- coco_eval.params.maxDets = self.maxdets
- img_ids, eval_imgs = self._evaluate(coco_eval, self.use_self_evaluate)
- all_scorings.append(eval_imgs)
- selected = self.select_best_scoring(all_scorings)
- self.eval_imgs[iou_type].append(selected)
- def select_best_scoring(self, scorings):
- # This function is used for "oracle" type evaluation.
- # It accepts the evaluation results with respect to several ground truths, and picks the best
- if len(scorings) == 1:
- return scorings[0]
- # Currently we don't support Oracle Phrase AP.
- # To implement it, we likely need to modify the cpp code since the eval_image type is opaque
- raise RuntimeError("Not implemented")
- def _dump(self, results):
- if self.dump is not None:
- dumped_results = copy.deepcopy(results)
- for r in dumped_results:
- if "bbox" not in self.iou_types and "bbox" in r:
- del r["bbox"]
- elif "bbox" in r:
- r["bbox"] = [round(coord, 5) for coord in r["bbox"]]
- r["score"] = round(r["score"], 5)
- self.dump.extend(dumped_results)
- def synchronize_between_processes(self):
- self._lazy_init()
- logging.info("Coco evaluator: Synchronizing between processes")
- for iou_type in self.iou_types:
- if len(self.eval_imgs[iou_type]) > 0:
- self.eval_imgs[iou_type] = np.concatenate(self.eval_imgs[iou_type], 2)
- else:
- num_areas = len(self.coco_evals[0][iou_type].params.areaRng)
- # assuming 1 class
- assert not self.useCats
- self.eval_imgs[iou_type] = np.empty((1, num_areas, 0))
- create_common_coco_eval(
- self.coco_evals[0][iou_type],
- self.img_ids,
- self.eval_imgs[iou_type],
- use_self_evaluate=self.use_self_evaluate,
- gather_pred_via_filesys=self.gather_pred_via_filesys,
- metrics_dump_dir=self.metrics_dump_dir,
- )
- if self.dump is not None:
- dumped_file = Path(self.dump_dir) / f"coco_predictions_{get_rank()}.json"
- logging.info(f"COCO evaluator: Dumping local predictions to {dumped_file}")
- with g_pathmgr.open(str(dumped_file), "w") as f:
- json.dump(self.dump, f)
- # if self.gather_pred_via_filesys:
- # dump = gather_to_rank_0_via_filesys(self.dump)
- # else:
- # dump = all_gather(self.dump, force_cpu=True)
- # self.dump = sum(dump, [])
- def accumulate(self, imgIds=None):
- self._lazy_init()
- logging.info(
- f"Coco evaluator: Accumulating on {len(imgIds) if imgIds is not None else 'all'} images"
- )
- if not is_main_process():
- return
- if imgIds is None:
- for coco_eval in self.coco_evals[0].values():
- accumulate(coco_eval, use_self_eval=self.use_self_evaluate)
- if imgIds is not None:
- imgIds = set(imgIds)
- for coco_eval in self.coco_evals[0].values():
- p = coco_eval.params
- id_mask = np.array([(i in imgIds) for i in p.imgIds], dtype=bool)
- old_img_ids = p.imgIds
- coco_eval.params.imgIds = np.asarray(p.imgIds)[id_mask]
- old_img_evals = coco_eval.evalImgs
- catIds = p.catIds if p.useCats else [-1]
- coco_eval.evalImgs = list(
- np.asarray(coco_eval.evalImgs)
- .reshape(len(catIds), len(p.areaRng), len(old_img_ids))[
- ..., id_mask
- ]
- .flatten()
- )
- accumulate(coco_eval, use_self_eval=self.use_self_evaluate)
- coco_eval.evalImgs = old_img_evals
- coco_eval.params.imgIds = old_img_ids
- def summarize(self):
- self._lazy_init()
- logging.info("Coco evaluator: Summarizing")
- if not is_main_process():
- return {}
- outs = {}
- if self.rarity_buckets is None:
- self.accumulate(self.eval_img_ids)
- for iou_type, coco_eval in self.coco_evals[0].items():
- print("IoU metric: {}".format(iou_type))
- summarize(coco_eval)
- if "bbox" in self.coco_evals[0]:
- for key, value in zip(*self.coco_evals[0]["bbox"].stats):
- outs[f"coco_eval_bbox_{key}"] = value
- if "segm" in self.coco_evals[0]:
- for key, value in zip(*self.coco_evals[0]["segm"].stats):
- outs[f"coco_eval_masks_{key}"] = value
- else:
- total_stats = {}
- all_keys = {}
- for bucket, img_list in self.rarity_buckets.items():
- self.accumulate(imgIds=img_list)
- bucket_name = RARITY_BUCKETS[bucket]
- for iou_type, coco_eval in self.coco_evals[0].items():
- print(f"IoU metric: {iou_type}. Rarity bucket: {bucket_name}")
- summarize(coco_eval)
- if "bbox" in self.coco_evals[0]:
- if "bbox" not in total_stats:
- total_stats["bbox"] = np.zeros_like(
- self.coco_evals[0]["bbox"].stats[1]
- )
- all_keys["bbox"] = self.coco_evals[0]["bbox"].stats[0]
- total_stats["bbox"] += self.coco_evals[0]["bbox"].stats[1]
- for key, value in zip(*self.coco_evals[0]["bbox"].stats):
- outs[f"coco_eval_bbox_{bucket_name}_{key}"] = value
- if "segm" in self.coco_evals[0]:
- if "segm" not in total_stats:
- total_stats["segm"] = np.zeros_like(
- self.coco_evals[0]["segm"].stats[1]
- )
- all_keys["segm"] = self.coco_evals[0]["segm"].stats[0]
- total_stats["segm"] += self.coco_evals[0]["segm"].stats[1]
- for key, value in zip(*self.coco_evals[0]["segm"].stats):
- outs[f"coco_eval_masks_{bucket_name}_{key}"] = value
- if "bbox" in total_stats:
- total_stats["bbox"] /= len(self.rarity_buckets)
- for key, value in zip(all_keys["bbox"], total_stats["bbox"]):
- outs[f"coco_eval_bbox_{key}"] = value
- if "segm" in total_stats:
- total_stats["segm"] /= len(self.rarity_buckets)
- for key, value in zip(all_keys["segm"], total_stats["segm"]):
- outs[f"coco_eval_masks_{key}"] = value
- # if self.dump is not None:
- # assert self.dump_dir is not None
- # logging.info("Coco evaluator: Dumping the global result file to disk")
- # with g_pathmgr.open(str(Path(self.dump_dir) / "coco_eval.json"), "w") as f:
- # json.dump(self.dump, f)
- return outs
- def compute_synced(self):
- self._lazy_init()
- self.synchronize_between_processes()
- return self.summarize()
- def compute(self):
- self._lazy_init()
- return {"": 0.0}
- def reset(self, cocoeval_cls=COCOeval):
- self.coco_evals = [{} for _ in range(len(self.coco_gts))]
- for i, coco_gt in enumerate(self.coco_gts):
- for iou_type in self.iou_types:
- self.coco_evals[i][iou_type] = cocoeval_cls(coco_gt, iouType=iou_type)
- self.coco_evals[i][iou_type].params.useCats = self.useCats
- self.coco_evals[i][iou_type].params.maxDets = self.maxdets
- if self.use_normalized_areas:
- self.coco_evals[i][iou_type].params.areaRng = [
- [0, 1e5],
- [0, 0.001],
- [0.001, 0.01],
- [0.01, 0.1],
- [0.1, 0.5],
- [0.5, 0.95],
- [0.95, 1e5],
- ]
- self.coco_evals[i][iou_type].params.areaRngLbl = [
- "all",
- "tiny",
- "small",
- "medium",
- "large",
- "huge",
- "whole_image",
- ]
- self.img_ids = []
- self.eval_imgs = {k: [] for k in self.iou_types}
- if self.dump is not None:
- self.dump = []
- def write(self, stats):
- self._lazy_init()
- """Write the results in the stats dict"""
- if "bbox" in self.coco_evals[0]:
- stats["coco_eval_bbox"] = self.coco_evals[0]["bbox"].stats.tolist()
- if "segm" in self.coco_evals[0]:
- stats["coco_eval_masks"] = self.coco_evals[0]["segm"].stats.tolist()
- return stats
- def prepare(self, predictions, iou_type):
- self._lazy_init()
- if iou_type == "bbox":
- return self.prepare_for_coco_detection(predictions)
- elif iou_type == "segm":
- return self.prepare_for_coco_segmentation(predictions)
- elif iou_type == "keypoints":
- return self.prepare_for_coco_keypoint(predictions)
- else:
- raise ValueError("Unknown iou type {}".format(iou_type))
- def prepare_for_coco_detection(self, predictions):
- self._lazy_init()
- coco_results = []
- for original_id, prediction in predictions.items():
- if len(prediction) == 0:
- continue
- boxes = prediction["boxes"]
- boxes = convert_to_xywh(boxes).tolist()
- scores = prediction["scores"].tolist()
- labels = prediction["labels"].tolist()
- coco_results.extend(
- [
- {
- "image_id": original_id,
- "category_id": labels[k],
- "bbox": box,
- "score": scores[k],
- }
- for k, box in enumerate(boxes)
- ]
- )
- return coco_results
- @torch.no_grad()
- def prepare_for_coco_segmentation(self, predictions):
- self._lazy_init()
- coco_results = []
- for original_id, prediction in predictions.items():
- if len(prediction) == 0:
- continue
- scores = prediction["scores"].tolist()
- labels = prediction["labels"].tolist()
- boundaries, dilated_boundaries = None, None
- if "boundaries" in prediction:
- boundaries = prediction["boundaries"]
- dilated_boundaries = prediction["dilated_boundaries"]
- assert dilated_boundaries is not None
- assert len(scores) == len(boundaries)
- if "masks_rle" in prediction:
- rles = prediction["masks_rle"]
- areas = []
- for rle in rles:
- cur_area = mask_utils.area(rle)
- h, w = rle["size"]
- areas.append(cur_area / (h * w))
- else:
- masks = prediction["masks"]
- masks = masks > 0.5
- h, w = masks.shape[-2:]
- areas = masks.flatten(1).sum(1) / (h * w)
- areas = areas.tolist()
- rles = rle_encode(masks.squeeze(1))
- # memory clean
- del masks
- del prediction["masks"]
- assert len(areas) == len(rles) == len(scores)
- for k, rle in enumerate(rles):
- payload = {
- "image_id": original_id,
- "category_id": labels[k],
- "segmentation": rle,
- "score": scores[k],
- "area": areas[k],
- }
- if boundaries is not None:
- payload["boundary"] = boundaries[k]
- payload["dilated_boundary"] = dilated_boundaries[k]
- coco_results.append(payload)
- return coco_results
- def prepare_for_coco_keypoint(self, predictions):
- self._lazy_init()
- coco_results = []
- for original_id, prediction in predictions.items():
- if len(prediction) == 0:
- continue
- boxes = prediction["boxes"]
- boxes = convert_to_xywh(boxes).tolist()
- scores = prediction["scores"].tolist()
- labels = prediction["labels"].tolist()
- keypoints = prediction["keypoints"]
- keypoints = keypoints.flatten(start_dim=1).tolist()
- coco_results.extend(
- [
- {
- "image_id": original_id,
- "category_id": labels[k],
- "keypoints": keypoint,
- "score": scores[k],
- }
- for k, keypoint in enumerate(keypoints)
- ]
- )
- return coco_results
- def convert_to_xywh(boxes):
- xmin, ymin, xmax, ymax = boxes.unbind(-1)
- return torch.stack((xmin, ymin, xmax - xmin, ymax - ymin), dim=-1)
- def merge(img_ids, eval_imgs, gather_pred_via_filesys=False):
- if gather_pred_via_filesys:
- # only gather the predictions to rank 0 (other ranks will receive empty
- # lists for `all_img_ids` and `all_eval_imgs`, which should be OK as
- # merging and evaluation are only done on rank 0)
- all_img_ids = gather_to_rank_0_via_filesys(img_ids)
- all_eval_imgs = gather_to_rank_0_via_filesys(eval_imgs)
- else:
- all_img_ids = all_gather(img_ids, force_cpu=True)
- all_eval_imgs = all_gather(eval_imgs, force_cpu=True)
- if not is_main_process():
- return None, None
- merged_img_ids = []
- for p in all_img_ids:
- merged_img_ids.extend(p)
- merged_eval_imgs = []
- for p in all_eval_imgs:
- merged_eval_imgs.append(p)
- merged_img_ids = np.array(merged_img_ids)
- merged_eval_imgs = np.concatenate(merged_eval_imgs, 2)
- # keep only unique (and in sorted order) images
- merged_img_ids, idx = np.unique(merged_img_ids, return_index=True)
- merged_eval_imgs = merged_eval_imgs[..., idx]
- return merged_img_ids, merged_eval_imgs
- def create_common_coco_eval(
- coco_eval,
- img_ids,
- eval_imgs,
- use_self_evaluate,
- gather_pred_via_filesys=False,
- metrics_dump_dir=None,
- ):
- img_ids, eval_imgs = merge(img_ids, eval_imgs, gather_pred_via_filesys)
- if not is_main_process():
- return
- if metrics_dump_dir is not None:
- dumped_file = (
- Path(metrics_dump_dir) / f"coco_eval_img_metrics_{get_rank()}.json"
- )
- logging.info(f"COCO evaluator: Dumping local predictions to {dumped_file}")
- with g_pathmgr.open(str(dumped_file), "w") as f:
- json.dump(eval_imgs.squeeze(), f, default=lambda x: x.tolist())
- img_ids = list(img_ids)
- # If some images were not predicted, we need to create dummy detections for them
- missing_img_ids = set(coco_eval.cocoGt.getImgIds()) - set(img_ids)
- if len(missing_img_ids) > 0:
- print(f"WARNING: {len(missing_img_ids)} images were not predicted!")
- coco_eval.cocoDt = COCO()
- coco_eval.params.imgIds = list(missing_img_ids)
- new_img_ids, new_eval_imgs = evaluate(coco_eval, use_self_evaluate)
- img_ids.extend(new_img_ids)
- eval_imgs = np.concatenate((eval_imgs, new_eval_imgs), axis=2)
- eval_imgs = list(eval_imgs.flatten())
- assert len(img_ids) == len(coco_eval.cocoGt.getImgIds())
- coco_eval.evalImgs = eval_imgs
- coco_eval.params.imgIds = img_ids
- coco_eval._paramsEval = copy.deepcopy(coco_eval.params)
- #################################################################
- # From pycocotools, just removed the prints and fixed
- # a Python3 bug about unicode not defined
- #################################################################
- # Copy of COCO prepare, but doesn't convert anntoRLE
- def segmentation_prepare(self):
- """
- Prepare ._gts and ._dts for evaluation based on params
- :return: None
- """
- p = self.params
- if p.useCats:
- gts = self.cocoGt.loadAnns(
- self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)
- )
- dts = self.cocoDt.loadAnns(
- self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds)
- )
- else:
- gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds))
- dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds))
- for gt in gts:
- gt["ignore"] = gt["ignore"] if "ignore" in gt else 0
- gt["ignore"] = "iscrowd" in gt and gt["iscrowd"]
- if p.iouType == "keypoints":
- gt["ignore"] = (gt["num_keypoints"] == 0) or gt["ignore"]
- self._gts = defaultdict(list) # gt for evaluation
- self._dts = defaultdict(list) # dt for evaluation
- for gt in gts:
- self._gts[gt["image_id"], gt["category_id"]].append(gt)
- for dt in dts:
- self._dts[dt["image_id"], dt["category_id"]].append(dt)
- self.evalImgs = defaultdict(list) # per-image per-category evaluation results
- self.eval = {} # accumulated evaluation results
- def evaluate(self, use_self_evaluate):
- """
- Run per image evaluation on given images and store results (a list of dict) in self.evalImgs
- :return: None
- """
- # tic = time.time()
- # print('Running per image evaluation...', use_self_evaluate)
- p = self.params
- # add backward compatibility if useSegm is specified in params
- if p.useSegm is not None:
- p.iouType = "segm" if p.useSegm == 1 else "bbox"
- print(
- "useSegm (deprecated) is not None. Running {} evaluation".format(p.iouType)
- )
- # print('Evaluate annotation type *{}*'.format(p.iouType))
- p.imgIds = list(np.unique(p.imgIds))
- if p.useCats:
- p.catIds = list(np.unique(p.catIds))
- p.maxDets = sorted(p.maxDets)
- self.params = p
- self._prepare()
- # loop through images, area range, max detection number
- catIds = p.catIds if p.useCats else [-1]
- if p.iouType == "segm" or p.iouType == "bbox":
- computeIoU = self.computeIoU
- elif p.iouType == "keypoints":
- computeIoU = self.computeOks
- self.ious = {
- (imgId, catId): computeIoU(imgId, catId)
- for imgId in p.imgIds
- for catId in catIds
- }
- maxDet = p.maxDets[-1]
- if use_self_evaluate:
- evalImgs = [
- self.evaluateImg(imgId, catId, areaRng, maxDet)
- for catId in catIds
- for areaRng in p.areaRng
- for imgId in p.imgIds
- ]
- # this is NOT in the pycocotools code, but could be done outside
- evalImgs = np.asarray(evalImgs).reshape(
- len(catIds), len(p.areaRng), len(p.imgIds)
- )
- return p.imgIds, evalImgs
- # <<<< Beginning of code differences with original COCO API
- # def convert_instances_to_cpp(instances, is_det=False):
- # # Convert annotations for a list of instances in an image to a format that's fast
- # # to access in C++
- # instances_cpp = []
- # for instance in instances:
- # instance_cpp = _CPP.InstanceAnnotation(
- # int(instance["id"]),
- # instance["score"] if is_det else instance.get("score", 0.0),
- # instance["area"],
- # bool(instance.get("iscrowd", 0)),
- # bool(instance.get("ignore", 0)),
- # )
- # instances_cpp.append(instance_cpp)
- # return instances_cpp
- # # Convert GT annotations, detections, and IOUs to a format that's fast to access in C++
- # ground_truth_instances = [
- # [convert_instances_to_cpp(self._gts[imgId, catId]) for catId in p.catIds]
- # for imgId in p.imgIds
- # ]
- # detected_instances = [
- # [
- # convert_instances_to_cpp(self._dts[imgId, catId], is_det=True)
- # for catId in p.catIds
- # ]
- # for imgId in p.imgIds
- # ]
- # ious = [[self.ious[imgId, catId] for catId in catIds] for imgId in p.imgIds]
- # if not p.useCats:
- # # For each image, flatten per-category lists into a single list
- # ground_truth_instances = [
- # [[o for c in i for o in c]] for i in ground_truth_instances
- # ]
- # detected_instances = [[[o for c in i for o in c]] for i in detected_instances]
- # # Call C++ implementation of self.evaluateImgs()
- # _evalImgs_cpp = _CPP.COCOevalEvaluateImages(
- # p.areaRng, maxDet, p.iouThrs, ious, ground_truth_instances, detected_instances
- # )
- # self._paramsEval = copy.deepcopy(self.params)
- # evalImgs = np.asarray(_evalImgs_cpp).reshape(
- # len(catIds), len(p.areaRng), len(p.imgIds)
- # )
- # return p.imgIds, evalImgs
- #################################################################
- # end of straight copy from pycocotools, just removing the prints
- #################################################################
- #################################################################
- # From pycocotools, but disabled mask->box conversion which is
- # pointless
- #################################################################
- def loadRes(self, resFile):
- """
- Load result file and return a result api object.
- :param resFile (str) : file name of result file
- :return: res (obj) : result api object
- """
- res = COCO()
- res.dataset["images"] = [img for img in self.dataset["images"]]
- if type(resFile) == str:
- anns = json.load(open(resFile))
- elif type(resFile) == np.ndarray:
- anns = self.loadNumpyAnnotations(resFile)
- else:
- anns = resFile
- assert type(anns) == list, "results in not an array of objects"
- annsImgIds = [ann["image_id"] for ann in anns]
- assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), (
- "Results do not correspond to current coco set"
- )
- if "caption" in anns[0]:
- imgIds = set([img["id"] for img in res.dataset["images"]]) & set(
- [ann["image_id"] for ann in anns]
- )
- res.dataset["images"] = [
- img for img in res.dataset["images"] if img["id"] in imgIds
- ]
- for id, ann in enumerate(anns):
- ann["id"] = id + 1
- elif "bbox" in anns[0] and not anns[0]["bbox"] == []:
- res.dataset["categories"] = copy.deepcopy(self.dataset["categories"])
- for id, ann in enumerate(anns):
- bb = ann["bbox"]
- x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]]
- if "segmentation" not in ann:
- ann["segmentation"] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
- ann["area"] = bb[2] * bb[3]
- ann["id"] = id + 1
- ann["iscrowd"] = 0
- elif "segmentation" in anns[0]:
- res.dataset["categories"] = copy.deepcopy(self.dataset["categories"])
- for id, ann in enumerate(anns):
- # now only support compressed RLE format as segmentation results
- # ann["area"] = mask_util.area(ann["segmentation"])
- # The following lines are disabled because they are pointless
- # if not 'bbox' in ann:
- # ann['bbox'] = maskUtils.toBbox(ann['segmentation'])
- ann["id"] = id + 1
- ann["iscrowd"] = 0
- elif "keypoints" in anns[0]:
- res.dataset["categories"] = copy.deepcopy(self.dataset["categories"])
- for id, ann in enumerate(anns):
- s = ann["keypoints"]
- x = s[0::3]
- y = s[1::3]
- x0, x1, y0, y1 = np.min(x), np.max(x), np.min(y), np.max(y)
- ann["area"] = (x1 - x0) * (y1 - y0)
- ann["id"] = id + 1
- ann["bbox"] = [x0, y0, x1 - x0, y1 - y0]
- res.dataset["annotations"] = anns
- res.createIndex()
- return res
- #################################################################
- # end of straight copy from pycocotools
- #################################################################
- #################################################################
- # From pycocotools, but added handling of custom area rngs, and returns stat keys
- #################################################################
- def summarize(self):
- """
- Compute and display summary metrics for evaluation results.
- Note this functin can *only* be applied on the default parameter setting
- """
- def _summarize(ap=1, iouThr=None, areaRng="all", maxDets=100):
- p = self.params
- iStr = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}"
- titleStr = "Average Precision" if ap == 1 else "Average Recall"
- typeStr = "(AP)" if ap == 1 else "(AR)"
- iouStr = (
- "{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1])
- if iouThr is None
- else "{:0.2f}".format(iouThr)
- )
- aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng]
- mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets]
- if ap == 1:
- # dimension of precision: [TxRxKxAxM]
- s = self.eval["precision"]
- # IoU
- if iouThr is not None:
- t = np.where(iouThr == p.iouThrs)[0]
- s = s[t]
- s = s[:, :, :, aind, mind]
- else:
- # dimension of recall: [TxKxAxM]
- s = self.eval["recall"]
- if iouThr is not None:
- t = np.where(iouThr == p.iouThrs)[0]
- s = s[t]
- s = s[:, :, aind, mind]
- if len(s[s > -1]) == 0:
- mean_s = -1
- else:
- mean_s = np.mean(s[s > -1])
- print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s))
- return mean_s
- def _summarizeDets():
- nb_results = 6 + (len(self.params.areaRng) - 1) * 2
- assert len(self.params.areaRng) == len(self.params.areaRngLbl)
- stats = np.zeros((nb_results,))
- keys = ["AP", "AP_50", "AP_75"]
- stats[0] = _summarize(1, maxDets=self.params.maxDets[2])
- stats[1] = _summarize(1, iouThr=0.5, maxDets=self.params.maxDets[2])
- stats[2] = _summarize(1, iouThr=0.75, maxDets=self.params.maxDets[2])
- cur_id = 3
- for area in self.params.areaRngLbl[1:]:
- stats[cur_id] = _summarize(1, areaRng=area, maxDets=self.params.maxDets[2])
- cur_id += 1
- keys.append(f"AP_{area}")
- stats[cur_id] = _summarize(0, maxDets=self.params.maxDets[0])
- cur_id += 1
- stats[cur_id] = _summarize(0, maxDets=self.params.maxDets[1])
- cur_id += 1
- stats[cur_id] = _summarize(0, maxDets=self.params.maxDets[2])
- cur_id += 1
- keys += ["AR", "AR_50", "AR_75"]
- for area in self.params.areaRngLbl[1:]:
- stats[cur_id] = _summarize(0, areaRng=area, maxDets=self.params.maxDets[2])
- cur_id += 1
- keys.append(f"AR_{area}")
- assert len(stats) == len(keys)
- return keys, stats
- if not self.eval:
- raise Exception("Please run accumulate() first")
- self.stats = _summarizeDets()
- #################################################################
- # end of straight copy from pycocotools
- #################################################################
- #################################################################
- # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/evaluation/fast_eval_api.py
- # with slight adjustments
- #################################################################
- def accumulate(self, use_self_eval=False):
- """
- Accumulate per image evaluation results and store the result in self.eval. Does not
- support changing parameter settings from those used by self.evaluate()
- """
- if use_self_eval:
- self.accumulate()
- return
- # CPP code is disabled
- # self.eval = _CPP.COCOevalAccumulate(self.params, self.evalImgs)
- # # recall is num_iou_thresholds X num_categories X num_area_ranges X num_max_detections
- # self.eval["recall"] = np.array(self.eval["recall"]).reshape(
- # self.eval["counts"][:1] + self.eval["counts"][2:]
- # )
- # # precision and scores are num_iou_thresholds X num_recall_thresholds X num_categories X
- # # num_area_ranges X num_max_detections
- # self.eval["precision"] = np.array(self.eval["precision"]).reshape(
- # self.eval["counts"]
- # )
- # self.eval["scores"] = np.array(self.eval["scores"]).reshape(self.eval["counts"])
|