| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539 |
- # @package _global_
- defaults:
- - _self_
- # ============================================================================
- # Paths Configuration (Chage this to your own paths)
- # ============================================================================
- paths:
- roboflow_vl_100_root: <YOUR_DATASET_DIR>
- experiment_log_dir: <YOUR EXPERIMENET LOG_DIR>
- bpe_path: <BPE_PATH> # This should be under sam3/assets/bpe_simple_vocab_16e6.txt.gz
- # Roboflow dataset configuration
- roboflow_train:
- num_images: 100 # Note: This is the number of images used for training. If null, all images are used.
- supercategory: ${all_roboflow_supercategories.${string:${submitit.job_array.task_index}}}
- # Training transforms pipeline
- train_transforms:
- - _target_: sam3.train.transforms.basic_for_api.ComposeAPI
- transforms:
- - _target_: sam3.train.transforms.filter_query_transforms.FlexibleFilterFindGetQueries
- query_filter:
- _target_: sam3.train.transforms.filter_query_transforms.FilterCrowds
- - _target_: sam3.train.transforms.point_sampling.RandomizeInputBbox
- box_noise_std: 0.1
- box_noise_max: 20
- - _target_: sam3.train.transforms.segmentation.DecodeRle
- - _target_: sam3.train.transforms.basic_for_api.RandomResizeAPI
- sizes:
- _target_: sam3.train.transforms.basic.get_random_resize_scales
- size: ${scratch.resolution}
- min_size: 480
- rounded: false
- max_size:
- _target_: sam3.train.transforms.basic.get_random_resize_max_size
- size: ${scratch.resolution}
- square: true
- consistent_transform: ${scratch.consistent_transform}
- - _target_: sam3.train.transforms.basic_for_api.PadToSizeAPI
- size: ${scratch.resolution}
- consistent_transform: ${scratch.consistent_transform}
- - _target_: sam3.train.transforms.basic_for_api.ToTensorAPI
- - _target_: sam3.train.transforms.filter_query_transforms.FlexibleFilterFindGetQueries
- query_filter:
- _target_: sam3.train.transforms.filter_query_transforms.FilterEmptyTargets
- - _target_: sam3.train.transforms.basic_for_api.NormalizeAPI
- mean: ${scratch.train_norm_mean}
- std: ${scratch.train_norm_std}
- - _target_: sam3.train.transforms.filter_query_transforms.FlexibleFilterFindGetQueries
- query_filter:
- _target_: sam3.train.transforms.filter_query_transforms.FilterEmptyTargets
- - _target_: sam3.train.transforms.filter_query_transforms.FlexibleFilterFindGetQueries
- query_filter:
- _target_: sam3.train.transforms.filter_query_transforms.FilterFindQueriesWithTooManyOut
- max_num_objects: ${scratch.max_ann_per_img}
- # Validation transforms pipeline
- val_transforms:
- - _target_: sam3.train.transforms.basic_for_api.ComposeAPI
- transforms:
- - _target_: sam3.train.transforms.basic_for_api.RandomResizeAPI
- sizes: ${scratch.resolution}
- max_size:
- _target_: sam3.train.transforms.basic.get_random_resize_max_size
- size: ${scratch.resolution}
- square: true
- consistent_transform: False
- - _target_: sam3.train.transforms.basic_for_api.ToTensorAPI
- - _target_: sam3.train.transforms.basic_for_api.NormalizeAPI
- mean: ${scratch.train_norm_mean}
- std: ${scratch.train_norm_std}
- # loss config (no mask loss)
- loss:
- _target_: sam3.train.loss.sam3_loss.Sam3LossWrapper
- matcher: ${scratch.matcher}
- o2m_weight: 2.0
- o2m_matcher:
- _target_: sam3.train.matcher.BinaryOneToManyMatcher
- alpha: 0.3
- threshold: 0.4
- topk: 4
- use_o2m_matcher_on_o2m_aux: false # Another option is true
- loss_fns_find:
- - _target_: sam3.train.loss.loss_fns.Boxes
- weight_dict:
- loss_bbox: 5.0
- loss_giou: 2.0
- - _target_: sam3.train.loss.loss_fns.IABCEMdetr
- weak_loss: False
- weight_dict:
- loss_ce: 20.0 # Another option is 100.0
- presence_loss: 20.0
- pos_weight: 10.0 # Another option is 5.0
- alpha: 0.25
- gamma: 2
- use_presence: True # Change
- pos_focal: false
- pad_n_queries: 200
- pad_scale_pos: 1.0
- loss_fn_semantic_seg: null
- scale_by_find_batch_size: ${scratch.scale_by_find_batch_size}
- # NOTE: Loss to be used for training in case of segmentation
- # loss:
- # _target_: sam3.train.loss.sam3_loss.Sam3LossWrapper
- # matcher: ${scratch.matcher}
- # o2m_weight: 2.0
- # o2m_matcher:
- # _target_: sam3.train.matcher.BinaryOneToManyMatcher
- # alpha: 0.3
- # threshold: 0.4
- # topk: 4
- # use_o2m_matcher_on_o2m_aux: false
- # loss_fns_find:
- # - _target_: sam3.train.loss.loss_fns.Boxes
- # weight_dict:
- # loss_bbox: 5.0
- # loss_giou: 2.0
- # - _target_: sam3.train.loss.loss_fns.IABCEMdetr
- # weak_loss: False
- # weight_dict:
- # loss_ce: 20.0 # Another option is 100.0
- # presence_loss: 20.0
- # pos_weight: 10.0 # Another option is 5.0
- # alpha: 0.25
- # gamma: 2
- # use_presence: True # Change
- # pos_focal: false
- # pad_n_queries: 200
- # pad_scale_pos: 1.0
- # - _target_: sam3.train.loss.loss_fns.Masks
- # focal_alpha: 0.25
- # focal_gamma: 2.0
- # weight_dict:
- # loss_mask: 200.0
- # loss_dice: 10.0
- # compute_aux: false
- # loss_fn_semantic_seg:
- # _target_: sam3.losses.loss_fns.SemanticSegCriterion
- # presence_head: True
- # presence_loss: False # Change
- # focal: True
- # focal_alpha: 0.6
- # focal_gamma: 2.0
- # downsample: False
- # weight_dict:
- # loss_semantic_seg: 20.0
- # loss_semantic_presence: 1.0
- # loss_semantic_dice: 30.0
- # scale_by_find_batch_size: ${scratch.scale_by_find_batch_size}
- # ============================================================================
- # Different helper parameters and functions
- # ============================================================================
- scratch:
- enable_segmentation: False # NOTE: This is the number of queries used for segmentation
- # Model parameters
- d_model: 256
- pos_embed:
- _target_: sam3.model.position_encoding.PositionEmbeddingSine
- num_pos_feats: ${scratch.d_model}
- normalize: true
- scale: null
- temperature: 10000
- # Box processing
- use_presence_eval: True
- original_box_postprocessor:
- _target_: sam3.eval.postprocessors.PostProcessImage
- max_dets_per_img: -1 # infinite detections
- use_original_ids: true
- use_original_sizes_box: true
- use_presence: ${scratch.use_presence_eval}
- # Matcher configuration
- matcher:
- _target_: sam3.train.matcher.BinaryHungarianMatcherV2
- focal: true # with `focal: true` it is equivalent to BinaryFocalHungarianMatcher
- cost_class: 2.0
- cost_bbox: 5.0
- cost_giou: 2.0
- alpha: 0.25
- gamma: 2
- stable: False
- scale_by_find_batch_size: True
- # Image processing parameters
- resolution: 1008
- consistent_transform: False
- max_ann_per_img: 200
- # Normalization parameters
- train_norm_mean: [0.5, 0.5, 0.5]
- train_norm_std: [0.5, 0.5, 0.5]
- val_norm_mean: [0.5, 0.5, 0.5]
- val_norm_std: [0.5, 0.5, 0.5]
- # Training parameters
- num_train_workers: 10
- num_val_workers: 0
- max_data_epochs: 20
- target_epoch_size: 1500
- hybrid_repeats: 1
- context_length: 2
- gather_pred_via_filesys: false
- # Learning rate and scheduler parameters
- lr_scale: 0.1
- lr_transformer: ${times:8e-4,${scratch.lr_scale}}
- lr_vision_backbone: ${times:2.5e-4,${scratch.lr_scale}}
- lr_language_backbone: ${times:5e-5,${scratch.lr_scale}}
- lrd_vision_backbone: 0.9
- wd: 0.1
- scheduler_timescale: 20
- scheduler_warmup: 20
- scheduler_cooldown: 20
- val_batch_size: 1
- collate_fn_val:
- _target_: sam3.train.data.collator.collate_fn_api
- _partial_: true
- repeats: ${scratch.hybrid_repeats}
- dict_key: roboflow100
- with_seg_masks: ${scratch.enable_segmentation} # Note: Set this to true if using segmentation masks!
- gradient_accumulation_steps: 1
- train_batch_size: 1
- collate_fn:
- _target_: sam3.train.data.collator.collate_fn_api
- _partial_: true
- repeats: ${scratch.hybrid_repeats}
- dict_key: all
- with_seg_masks: ${scratch.enable_segmentation} # Note: Set this to true if using segmentation masks!
- # ============================================================================
- # Trainer Configuration
- # ============================================================================
- trainer:
- _target_: sam3.train.trainer.Trainer
- skip_saving_ckpts: true
- empty_gpu_mem_cache_after_eval: True
- skip_first_val: True
- max_epochs: 20
- accelerator: cuda
- seed_value: 123
- val_epoch_freq: 10
- mode: val
- gradient_accumulation_steps: ${scratch.gradient_accumulation_steps}
- distributed:
- backend: nccl
- find_unused_parameters: True
- gradient_as_bucket_view: True
- loss:
- all: ${roboflow_train.loss}
- default:
- _target_: sam3.train.loss.sam3_loss.DummyLoss
- data:
- train:
- _target_: sam3.train.data.torch_dataset.TorchDataset
- dataset:
- _target_: sam3.train.data.sam3_image_dataset.Sam3ImageDataset
- limit_ids: ${roboflow_train.num_images}
- transforms: ${roboflow_train.train_transforms}
- load_segmentation: ${scratch.enable_segmentation}
- max_ann_per_img: 500000
- multiplier: 1
- max_train_queries: 50000
- max_val_queries: 50000
- training: true
- use_caching: False
- img_folder: ${paths.roboflow_vl_100_root}/${roboflow_train.supercategory}/train/
- ann_file: ${paths.roboflow_vl_100_root}/${roboflow_train.supercategory}/train/_annotations.coco.json
- shuffle: True
- batch_size: ${scratch.train_batch_size}
- num_workers: ${scratch.num_train_workers}
- pin_memory: True
- drop_last: True
- collate_fn: ${scratch.collate_fn}
- val:
- _target_: sam3.train.data.torch_dataset.TorchDataset
- dataset:
- _target_: sam3.train.data.sam3_image_dataset.Sam3ImageDataset
- load_segmentation: ${scratch.enable_segmentation}
- coco_json_loader:
- _target_: sam3.train.data.coco_json_loaders.COCO_FROM_JSON
- include_negatives: true
- category_chunk_size: 2 # Note: You can increase this based on the memory of your GPU.
- _partial_: true
- img_folder: ${paths.roboflow_vl_100_root}/${roboflow_train.supercategory}/test/
- ann_file: ${paths.roboflow_vl_100_root}/${roboflow_train.supercategory}/test/_annotations.coco.json
- transforms: ${roboflow_train.val_transforms}
- max_ann_per_img: 100000
- multiplier: 1
- training: false
- shuffle: False
- batch_size: ${scratch.val_batch_size}
- num_workers: ${scratch.num_val_workers}
- pin_memory: True
- drop_last: False
- collate_fn: ${scratch.collate_fn_val}
- model:
- _target_: sam3.model_builder.build_sam3_image_model
- bpe_path: ${paths.bpe_path}
- device: cpus
- eval_mode: true
- enable_segmentation: ${scratch.enable_segmentation} # Warning: Enable this if using segmentation.
- meters:
- val:
- roboflow100:
- detection:
- _target_: sam3.eval.coco_writer.PredictionDumper
- iou_type: "bbox"
- dump_dir: ${launcher.experiment_log_dir}/dumps/roboflow/${roboflow_train.supercategory}
- merge_predictions: True
- postprocessor: ${scratch.original_box_postprocessor}
- gather_pred_via_filesys: ${scratch.gather_pred_via_filesys}
- maxdets: 100
- pred_file_evaluators:
- - _target_: sam3.eval.coco_eval_offline.CocoEvaluatorOfflineWithPredFileEvaluators
- gt_path: ${paths.roboflow_vl_100_root}/${roboflow_train.supercategory}/test/_annotations.coco.json
- tide: False
- iou_type: "bbox"
- optim:
- amp:
- enabled: True
- amp_dtype: bfloat16
- optimizer:
- _target_: torch.optim.AdamW
- gradient_clip:
- _target_: sam3.train.optim.optimizer.GradientClipper
- max_norm: 0.1
- norm_type: 2
- param_group_modifiers:
- - _target_: sam3.train.optim.optimizer.layer_decay_param_modifier
- _partial_: True
- layer_decay_value: ${scratch.lrd_vision_backbone}
- apply_to: 'backbone.vision_backbone.trunk'
- overrides:
- - pattern: '*pos_embed*'
- value: 1.0
- options:
- lr:
- - scheduler: # transformer and class_embed
- _target_: sam3.train.optim.schedulers.InverseSquareRootParamScheduler
- base_lr: ${scratch.lr_transformer}
- timescale: ${scratch.scheduler_timescale}
- warmup_steps: ${scratch.scheduler_warmup}
- cooldown_steps: ${scratch.scheduler_cooldown}
- - scheduler:
- _target_: sam3.train.optim.schedulers.InverseSquareRootParamScheduler
- base_lr: ${scratch.lr_vision_backbone}
- timescale: ${scratch.scheduler_timescale}
- warmup_steps: ${scratch.scheduler_warmup}
- cooldown_steps: ${scratch.scheduler_cooldown}
- param_names:
- - 'backbone.vision_backbone.*'
- - scheduler:
- _target_: sam3.train.optim.schedulers.InverseSquareRootParamScheduler
- base_lr: ${scratch.lr_language_backbone}
- timescale: ${scratch.scheduler_timescale}
- warmup_steps: ${scratch.scheduler_warmup}
- cooldown_steps: ${scratch.scheduler_cooldown}
- param_names:
- - 'backbone.language_backbone.*'
- weight_decay:
- - scheduler:
- _target_: fvcore.common.param_scheduler.ConstantParamScheduler
- value: ${scratch.wd}
- - scheduler:
- _target_: fvcore.common.param_scheduler.ConstantParamScheduler
- value: 0.0
- param_names:
- - '*bias*'
- module_cls_names: ['torch.nn.LayerNorm']
- checkpoint:
- save_dir: ${launcher.experiment_log_dir}/checkpoints
- save_freq: 0 # 0 only last checkpoint is saved.
- logging:
- tensorboard_writer:
- _target_: sam3.train.utils.logger.make_tensorboard_logger
- log_dir: ${launcher.experiment_log_dir}/tensorboard
- flush_secs: 120
- should_log: True
- wandb_writer: null
- log_dir: ${launcher.experiment_log_dir}/logs/${roboflow_train.supercategory}
- log_freq: 10
- # ============================================================================
- # Launcher and Submitit Configuration
- # ============================================================================
- launcher:
- num_nodes: 1
- gpus_per_node: 2
- experiment_log_dir: ${paths.experiment_log_dir}
- multiprocessing_context: forkserver
- submitit:
- account: null
- partition: null
- qos: null
- timeout_hour: 72
- use_cluster: True
- cpus_per_task: 10
- port_range: [10000, 65000]
- constraint: null
- # Uncomment for job array configuration
- job_array:
- num_tasks: 100
- task_index: 0
- # ============================================================================
- # Available Roboflow Supercategories (for reference)
- # ============================================================================
- all_roboflow_supercategories:
- - -grccs
- - zebrasatasturias
- - cod-mw-warzone
- - canalstenosis
- - label-printing-defect-version-2
- - new-defects-in-wood
- - orionproducts
- - aquarium-combined
- - varroa-mites-detection--test-set
- - clashroyalechardetector
- - stomata-cells
- - halo-infinite-angel-videogame
- - pig-detection
- - urine-analysis1
- - aerial-sheep
- - orgharvest
- - actions
- - mahjong
- - liver-disease
- - needle-base-tip-min-max
- - wheel-defect-detection
- - aircraft-turnaround-dataset
- - xray
- - wildfire-smoke
- - spinefrxnormalvindr
- - ufba-425
- - speech-bubbles-detection
- - train
- - pill
- - truck-movement
- - car-logo-detection
- - inbreast
- - sea-cucumbers-new-tiles
- - uavdet-small
- - penguin-finder-seg
- - aerial-airport
- - bibdetection
- - taco-trash-annotations-in-context
- - bees
- - recode-waste
- - screwdetectclassification
- - wine-labels
- - aerial-cows
- - into-the-vale
- - gwhd2021
- - lacrosse-object-detection
- - defect-detection
- - dataconvert
- - x-ray-id
- - ball
- - tube
- - 2024-frc
- - crystal-clean-brain-tumors-mri-dataset
- - grapes-5
- - human-detection-in-floods
- - buoy-onboarding
- - apoce-aerial-photographs-for-object-detection-of-construction-equipment
- - l10ul502
- - floating-waste
- - deeppcb
- - ism-band-packet-detection
- - weeds4
- - invoice-processing
- - thermal-cheetah
- - tomatoes-2
- - marine-sharks
- - peixos-fish
- - sssod
- - aerial-pool
- - countingpills
- - asphaltdistressdetection
- - roboflow-trained-dataset
- - everdaynew
- - underwater-objects
- - soda-bottles
- - dentalai
- - jellyfish
- - deepfruits
- - activity-diagrams
- - circuit-voltages
- - all-elements
- - macro-segmentation
- - exploratorium-daphnia
- - signatures
- - conveyor-t-shirts
- - fruitjes
- - grass-weeds
- - infraredimageofpowerequipment
- - 13-lkc01
- - wb-prova
- - flir-camera-objects
- - paper-parts
- - football-player-detection
- - trail-camera
- - smd-components
- - water-meter
- - nih-xray
- - the-dreidel-project
- - electric-pylon-detection-in-rsi
- - cable-damage
|