| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276 |
- # Copyright (c) Meta Platforms, Inc. and affiliates.
- # All rights reserved.
- # This source code is licensed under the license found in the
- # LICENSE file in the root directory of this source tree.
- import os
- import warnings
- from threading import Thread
- import numpy as np
- import torch
- from PIL import Image
- from tqdm import tqdm
- def get_sdpa_settings():
- if torch.cuda.is_available():
- old_gpu = torch.cuda.get_device_properties(0).major < 7
- # only use Flash Attention on Ampere (8.0) or newer GPUs
- use_flash_attn = torch.cuda.get_device_properties(0).major >= 8
- if not use_flash_attn:
- warnings.warn(
- "Flash Attention is disabled as it requires a GPU with Ampere (8.0) CUDA capability.",
- category=UserWarning,
- stacklevel=2,
- )
- # keep math kernel for PyTorch versions before 2.2 (Flash Attention v2 is only
- # available on PyTorch 2.2+, while Flash Attention v1 cannot handle all cases)
- pytorch_version = tuple(int(v) for v in torch.__version__.split(".")[:2])
- if pytorch_version < (2, 2):
- warnings.warn(
- f"You are using PyTorch {torch.__version__} without Flash Attention v2 support. "
- "Consider upgrading to PyTorch 2.2+ for Flash Attention v2 (which could be faster).",
- category=UserWarning,
- stacklevel=2,
- )
- math_kernel_on = pytorch_version < (2, 2) or not use_flash_attn
- else:
- old_gpu = True
- use_flash_attn = False
- math_kernel_on = True
- return old_gpu, use_flash_attn, math_kernel_on
- def get_connected_components(mask):
- """
- Get the connected components (8-connectivity) of binary masks of shape (N, 1, H, W).
- Inputs:
- - mask: A binary mask tensor of shape (N, 1, H, W), where 1 is foreground and 0 is
- background.
- Outputs:
- - labels: A tensor of shape (N, 1, H, W) containing the connected component labels
- for foreground pixels and 0 for background pixels.
- - counts: A tensor of shape (N, 1, H, W) containing the area of the connected
- components for foreground pixels and 0 for background pixels.
- """
- from sam2 import _C
- return _C.get_connected_componnets(mask.to(torch.uint8).contiguous())
- def mask_to_box(masks: torch.Tensor):
- """
- compute bounding box given an input mask
- Inputs:
- - masks: [B, 1, H, W] boxes, dtype=torch.Tensor
- Returns:
- - box_coords: [B, 1, 4], contains (x, y) coordinates of top left and bottom right box corners, dtype=torch.Tensor
- """
- B, _, h, w = masks.shape
- device = masks.device
- xs = torch.arange(w, device=device, dtype=torch.int32)
- ys = torch.arange(h, device=device, dtype=torch.int32)
- grid_xs, grid_ys = torch.meshgrid(xs, ys, indexing="xy")
- grid_xs = grid_xs[None, None, ...].expand(B, 1, h, w)
- grid_ys = grid_ys[None, None, ...].expand(B, 1, h, w)
- min_xs, _ = torch.min(torch.where(masks, grid_xs, w).flatten(-2), dim=-1)
- max_xs, _ = torch.max(torch.where(masks, grid_xs, -1).flatten(-2), dim=-1)
- min_ys, _ = torch.min(torch.where(masks, grid_ys, h).flatten(-2), dim=-1)
- max_ys, _ = torch.max(torch.where(masks, grid_ys, -1).flatten(-2), dim=-1)
- bbox_coords = torch.stack((min_xs, min_ys, max_xs, max_ys), dim=-1)
- return bbox_coords
- def _load_img_as_tensor(img_path, image_size):
- img_pil = Image.open(img_path)
- img_np = np.array(img_pil.convert("RGB").resize((image_size, image_size)))
- if img_np.dtype == np.uint8: # np.uint8 is expected for JPEG images
- img_np = img_np / 255.0
- else:
- raise RuntimeError(f"Unknown image dtype: {img_np.dtype} on {img_path}")
- img = torch.from_numpy(img_np).permute(2, 0, 1)
- video_width, video_height = img_pil.size # the original video size
- return img, video_height, video_width
- class AsyncVideoFrameLoader:
- """
- A list of video frames to be load asynchronously without blocking session start.
- """
- def __init__(
- self,
- img_paths,
- image_size,
- offload_video_to_cpu,
- img_mean,
- img_std,
- compute_device,
- ):
- self.img_paths = img_paths
- self.image_size = image_size
- self.offload_video_to_cpu = offload_video_to_cpu
- self.img_mean = img_mean
- self.img_std = img_std
- # items in `self._images` will be loaded asynchronously
- self.images = [None] * len(img_paths)
- # catch and raise any exceptions in the async loading thread
- self.exception = None
- # video_height and video_width be filled when loading the first image
- self.video_height = None
- self.video_width = None
- self.compute_device = compute_device
- # load the first frame to fill video_height and video_width and also
- # to cache it (since it's most likely where the user will click)
- self.__getitem__(0)
- # load the rest of frames asynchronously without blocking the session start
- def _load_frames():
- try:
- for n in tqdm(range(len(self.images)), desc="frame loading (JPEG)"):
- self.__getitem__(n)
- except Exception as e:
- self.exception = e
- self.thread = Thread(target=_load_frames, daemon=True)
- self.thread.start()
- def __getitem__(self, index):
- if self.exception is not None:
- raise RuntimeError("Failure in frame loading thread") from self.exception
- img = self.images[index]
- if img is not None:
- return img
- img, video_height, video_width = _load_img_as_tensor(
- self.img_paths[index], self.image_size
- )
- self.video_height = video_height
- self.video_width = video_width
- # normalize by mean and std
- img -= self.img_mean
- img /= self.img_std
- if not self.offload_video_to_cpu:
- img = img.to(self.compute_device, non_blocking=True)
- self.images[index] = img
- return img
- def __len__(self):
- return len(self.images)
- def load_video_frames(
- video_path,
- image_size,
- offload_video_to_cpu,
- img_mean=(0.485, 0.456, 0.406),
- img_std=(0.229, 0.224, 0.225),
- async_loading_frames=False,
- compute_device=torch.device("cuda"),
- ):
- """
- Load the video frames from a directory of JPEG files ("<frame_index>.jpg" format).
- The frames are resized to image_size x image_size and are loaded to GPU if
- `offload_video_to_cpu` is `False` and to CPU if `offload_video_to_cpu` is `True`.
- You can load a frame asynchronously by setting `async_loading_frames` to `True`.
- """
- if isinstance(video_path, str) and os.path.isdir(video_path):
- jpg_folder = video_path
- else:
- raise NotImplementedError(
- "Only JPEG frames are supported at this moment. For video files, you may use "
- "ffmpeg (https://ffmpeg.org/) to extract frames into a folder of JPEG files, such as \n"
- "```\n"
- "ffmpeg -i <your_video>.mp4 -q:v 2 -start_number 0 <output_dir>/'%05d.jpg'\n"
- "```\n"
- "where `-q:v` generates high-quality JPEG frames and `-start_number 0` asks "
- "ffmpeg to start the JPEG file from 00000.jpg."
- )
- frame_names = [
- p
- for p in os.listdir(jpg_folder)
- if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
- ]
- frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
- num_frames = len(frame_names)
- if num_frames == 0:
- raise RuntimeError(f"no images found in {jpg_folder}")
- img_paths = [os.path.join(jpg_folder, frame_name) for frame_name in frame_names]
- img_mean = torch.tensor(img_mean, dtype=torch.float32)[:, None, None]
- img_std = torch.tensor(img_std, dtype=torch.float32)[:, None, None]
- if async_loading_frames:
- lazy_images = AsyncVideoFrameLoader(
- img_paths,
- image_size,
- offload_video_to_cpu,
- img_mean,
- img_std,
- compute_device,
- )
- return lazy_images, lazy_images.video_height, lazy_images.video_width
- images = torch.zeros(num_frames, 3, image_size, image_size, dtype=torch.float32)
- for n, img_path in enumerate(tqdm(img_paths, desc="frame loading (JPEG)")):
- images[n], video_height, video_width = _load_img_as_tensor(img_path, image_size)
- if not offload_video_to_cpu:
- images = images.to(compute_device)
- img_mean = img_mean.to(compute_device)
- img_std = img_std.to(compute_device)
- # normalize by mean and std
- images -= img_mean
- images /= img_std
- return images, video_height, video_width
- def fill_holes_in_mask_scores(mask, max_area):
- """
- A post processor to fill small holes in mask scores with area under `max_area`.
- """
- # Holes are those connected components in background with area <= self.max_area
- # (background regions are those with mask scores <= 0)
- assert max_area > 0, "max_area must be positive"
- input_mask = mask
- try:
- labels, areas = get_connected_components(mask <= 0)
- is_hole = (labels > 0) & (areas <= max_area)
- # We fill holes with a small positive mask score (0.1) to change them to foreground.
- mask = torch.where(is_hole, 0.1, mask)
- except Exception as e:
- # Skip the post-processing step on removing small holes if the CUDA kernel fails
- warnings.warn(
- f"{e}\n\nSkipping the post-processing step due to the error above. You can "
- "still use SAM 2 and it's OK to ignore the error above, although some post-processing "
- "functionality may be limited (which doesn't affect the results in most cases; see "
- "https://github.com/facebookresearch/segment-anything-2/blob/main/INSTALL.md).",
- category=UserWarning,
- stacklevel=2,
- )
- mask = input_mask
- return mask
- def concat_points(old_point_inputs, new_points, new_labels):
- """Add new points and labels to previous point inputs (add at the end)."""
- if old_point_inputs is None:
- points, labels = new_points, new_labels
- else:
- points = torch.cat([old_point_inputs["point_coords"], new_points], dim=1)
- labels = torch.cat([old_point_inputs["point_labels"], new_labels], dim=1)
- return {"point_coords": points, "point_labels": labels}
|