# Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved # pyre-unsafe """ Adapted from: 1. https://github.com/meta-llama/codellama/blob/main/llama/model.py 2. https://github.com/naver-ai/rope-vit 3. https://github.com/lucidrains/rotary-embedding-torch """ from typing import Optional import torch from einops import rearrange, repeat from torch import broadcast_tensors, nn def init_t_xy(end_x: int, end_y: int, scale: float = 1.0, offset: int = 0, device=None): t = torch.arange(end_x * end_y, dtype=torch.float32, device=device) t_x = (t % end_x).float() t_y = torch.div(t, end_x, rounding_mode="floor").float() return t_x * scale + offset, t_y * scale + offset def compute_axial_cis( dim: int, end_x: int, end_y: int, theta: float = 10000.0, scale_pos: float = 1.0, offset: int = 0, device=None, ): freqs_x = 1.0 / ( theta ** (torch.arange(0, dim, 4, device=device)[: (dim // 4)].float() / dim) ) freqs_y = 1.0 / ( theta ** (torch.arange(0, dim, 4, device=device)[: (dim // 4)].float() / dim) ) t_x, t_y = init_t_xy(end_x, end_y, scale_pos, offset, device=device) freqs_x = torch.outer(t_x, freqs_x) freqs_y = torch.outer(t_y, freqs_y) freqs_cis_x = torch.polar(torch.ones_like(freqs_x), freqs_x) freqs_cis_y = torch.polar(torch.ones_like(freqs_y), freqs_y) return torch.cat([freqs_cis_x, freqs_cis_y], dim=-1) def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): ndim = x.ndim assert 0 <= 1 < ndim assert freqs_cis.shape == (x.shape[-2], x.shape[-1]) shape = [d if i >= ndim - 2 else 1 for i, d in enumerate(x.shape)] return freqs_cis.view(*shape) def apply_rotary_enc( xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor, repeat_freqs_k: bool = False, ): xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = ( torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) if xk.shape[-2] != 0 else None ) freqs_cis = reshape_for_broadcast(freqs_cis, xq_) xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) if xk_ is None: # no keys to rotate, due to dropout return xq_out.type_as(xq).to(xq.device), xk # repeat freqs along seq_len dim to match k seq_len if repeat_freqs_k: r = xk_.shape[-2] // xq_.shape[-2] freqs_cis = freqs_cis.repeat(*([1] * (freqs_cis.ndim - 2)), r, 1) xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device) def complex_mult(xq_real, xq_imag, freqs_cis_real, freqs_cis_imag): # Compute the real part of the product real_part = xq_real * freqs_cis_real - xq_imag * freqs_cis_imag # Compute the imaginary part of the product imag_part = xq_real * freqs_cis_imag + xq_imag * freqs_cis_real # Stack the real and imaginary parts along the last dimension return torch.stack([real_part, imag_part], dim=-1) def apply_rotary_enc_real( xq: torch.Tensor, xk: torch.Tensor, freqs_cis_real: torch.Tensor, freqs_cis_imag: torch.Tensor, repeat_freqs_k: bool = False, ): assert xk is not None assert xk.shape[-2] != 0 xq_real = xq.float().reshape(*xq.shape[:-1], -1, 2)[..., 0] xq_imag = xq.float().reshape(*xq.shape[:-1], -1, 2)[..., 1] xk_real = xk.float().reshape(*xk.shape[:-1], -1, 2)[..., 0] xk_imag = xk.float().reshape(*xk.shape[:-1], -1, 2)[..., 1] freqs_cis_real = reshape_for_broadcast(freqs_cis_real, xq_real) freqs_cis_imag = reshape_for_broadcast(freqs_cis_imag, xq_imag) xq_out = complex_mult(xq_real, xq_imag, freqs_cis_real, freqs_cis_imag).flatten(3) if repeat_freqs_k: r = xk_real.shape[-2] // xq_real.shape[-2] freqs_cis_real = freqs_cis_real.repeat(*([1] * (freqs_cis_real.ndim - 2)), r, 1) freqs_cis_imag = freqs_cis_imag.repeat(*([1] * (freqs_cis_imag.ndim - 2)), r, 1) xk_out = complex_mult(xk_real, xk_imag, freqs_cis_real, freqs_cis_imag).flatten(3) # xq_out = torch.view_as_real(torch.complex(xq_real, xq_imag) * torch.complex(freqs_cis_real, freqs_cis_imag)).flatten(3) # xk_out = torch.view_as_real(torch.compelx(xk_real, xk_imag) * torch.complex(freqs_cis_real, freqs_cis_imag)).flatten(3) return xq_out.type_as(xq).to(xq.device), xk_out.type_as(xk).to(xk.device) # rotary embedding helper functions def broadcat(tensors, dim=-1): broadcasted_tensors = broadcast_tensors(*tensors) return torch.cat(broadcasted_tensors, dim=dim) def rotate_half(x: torch.Tensor): x = rearrange(x, "... (d r) -> ... d r", r=2) x1, x2 = x.unbind(dim=-1) x = torch.stack((-x2, x1), dim=-1) return rearrange(x, "... d r -> ... (d r)") class VisionRotaryEmbeddingVE(nn.Module): def __init__( self, dim: int, seq_len: int, pt_seq_len: Optional[int] = None, theta: float = 10000.0, offset: int = 1, # specific to VE ): super().__init__() freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) scale = 1.0 if pt_seq_len is not None: scale = pt_seq_len / seq_len # offset of +1 following VE - even though for the # attention op only differences matter t = torch.arange(seq_len) * scale + offset freqs = torch.einsum("..., f -> ... f", t, freqs) freqs = repeat(freqs, "... n -> ... (n r)", r=2) freqs = broadcat((freqs[None, :, :], freqs[:, None, :]), dim=-1) freqs_cos = freqs.cos().view(-1, freqs.shape[-1]) freqs_sin = freqs.sin().view(-1, freqs.shape[-1]) self.register_buffer("freqs_cos", freqs_cos) self.register_buffer("freqs_sin", freqs_sin) def forward(self, t: torch.Tensor): return t * self.freqs_cos + rotate_half(t) * self.freqs_sin