grenerate_main_image_test.py 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594
  1. import os
  2. import copy
  3. import time
  4. from .image_deal_base_func import *
  5. from PIL import Image, ImageDraw
  6. from blend_modes import multiply
  7. import os
  8. import settings
  9. from functools import wraps
  10. from .multi_threaded_image_saving import ImageSaver
  11. from .get_mask_by_green import GetMask
  12. def time_it(func):
  13. @wraps(func) # 使用wraps来保留原始函数的元数据信息
  14. def wrapper(*args, **kwargs):
  15. start_time = time.time() # 记录开始时间
  16. result = func(*args, **kwargs) # 调用原始函数
  17. end_time = time.time() # 记录结束时间
  18. print(
  19. f"Executing {func.__name__} took {end_time - start_time:.4f} seconds."
  20. ) # 打印耗时
  21. return result
  22. return wrapper
  23. class GeneratePic(object):
  24. def __init__(self, is_test=False):
  25. # self.logger = MyLogger()
  26. self.is_test = is_test
  27. self.saver = ImageSaver()
  28. pass
  29. @time_it
  30. def get_mask_and_config(self, im_jpg: Image, im_png: Image, curve_mask: bool):
  31. """
  32. 步骤:
  33. 1、尺寸进行对应缩小
  34. 2、查找并设定鞋底阴影蒙版
  35. 3、自动色阶检查亮度
  36. 4、输出自动色阶参数、以及放大的尺寸蒙版
  37. """
  38. # ===================尺寸进行对应缩小(提升处理速度)
  39. im_jpg = to_resize(im_jpg, width=800)
  40. im_png = to_resize(im_png, width=800)
  41. x1, y1, x2, y2 = im_png.getbbox()
  42. cv2_png = pil_to_cv2(im_png)
  43. # =====================设定鞋底阴影图的蒙版
  44. # 查找每列的最低非透明点
  45. min_y_values = find_lowest_non_transparent_points(cv2_png)
  46. # 在鞋底最低处增加一条直线蒙版,蒙版宽度为有效区域大小
  47. image_high = im_jpg.height
  48. print("图片高度:", image_high)
  49. cv2_jpg = pil_to_cv2(im_jpg)
  50. # 返回线条图片,以及最低位置
  51. print("返回线条图片,以及最低位置")
  52. # crop_image_box=(x1, y1, x2, y2),
  53. if curve_mask:
  54. crop_image_box = None
  55. else:
  56. # 不需要曲线部分的蒙版
  57. crop_image_box = (x1, y1, x2, y2)
  58. img_with_shifted_line, lowest_y = draw_shifted_line(
  59. image=cv2_jpg,
  60. min_y_values=min_y_values,
  61. shift_amount=15,
  62. one_line_pos=(x1, x2),
  63. line_color=(0, 0, 0),
  64. line_thickness=20,
  65. app=settings.app,
  66. crop_image_box=crop_image_box,
  67. )
  68. print("66 制作蒙版")
  69. # 制作蒙版
  70. mask_line = cv2_to_pil(img_with_shifted_line)
  71. mask = mask_line.convert("L") # 转换为灰度图
  72. mask = ImageOps.invert(mask)
  73. # 蒙版扩边
  74. print("72 蒙版扩边")
  75. # 默认expansion_radius 65 blur_radius 45
  76. mask = expand_or_shrink_mask(
  77. pil_image=mask, expansion_radius=50, blur_radius=35
  78. )
  79. # =============使用绿色蒙版进行处理
  80. if settings.IS_GET_GREEN_MASK:
  81. print("============使用绿色蒙版进行处理")
  82. mask = mask.convert("RGB")
  83. white_bg = Image.new(mode="RGB", size=im_png.size, color=(0, 0, 0))
  84. green_areas_mask_pil = GetMask().find_green_areas(cv2_jpg)
  85. green_areas_mask_pil = expand_or_shrink_mask(
  86. pil_image=green_areas_mask_pil, expansion_radius=15, blur_radius=5
  87. )
  88. mask.paste(white_bg, mask=green_areas_mask_pil.convert("L"))
  89. mask = mask.convert("L")
  90. # ====================生成新的图片
  91. print("84 生成新的图片")
  92. bg = Image.new(mode="RGBA", size=im_png.size, color=(255, 255, 255, 255))
  93. bg.paste(im_png, mask=im_png)
  94. bg.paste(im_jpg, mask=mask) # 粘贴有阴影的地方
  95. if self.is_test:
  96. _bg = bg.copy()
  97. draw = ImageDraw.Draw(_bg)
  98. # 定义直线的起点和终点坐标
  99. start_point = (0, lowest_y) # 直线的起始点
  100. end_point = (_bg.width, lowest_y) # 直线的结束点
  101. # 定义直线的颜色(R, G, B)
  102. line_color = (255, 0, 0) # 红色
  103. _r = Image.new(mode="RGBA", size=im_png.size, color=(246, 147, 100, 255))
  104. # mask_line = mask_line.convert('L') # 转换为灰度图
  105. # mask_line = ImageOps.invert(mask_line)
  106. # _bg.paste(_r, mask=mask)
  107. # 绘制直线
  108. draw.line([start_point, end_point], fill=line_color, width=1)
  109. _bg.show()
  110. # bg.save(r"C:\Users\gymmc\Desktop\data\bg.png")
  111. # bg.show()
  112. # ==================自动色阶处理======================
  113. # 对上述拼接后的图片进行自动色阶处理
  114. bg = bg.convert("RGB")
  115. _im = cv2.cvtColor(np.asarray(bg), cv2.COLOR_RGB2BGR)
  116. # 背景阴影
  117. im_shadow = cv2.cvtColor(_im, cv2.COLOR_BGR2GRAY)
  118. print("image_high lowest_y", image_high, lowest_y)
  119. if lowest_y < 0 or lowest_y >= image_high:
  120. lowest_y = image_high - 1
  121. print("image_high lowest_y", image_high, lowest_y)
  122. rows = [lowest_y] # 需要检查的像素行
  123. print("copy.copy(im_shadow)")
  124. _im_shadow = copy.copy(im_shadow)
  125. Midtones = 0.7
  126. Highlight = 235
  127. k = copy.copy(settings.COLOR_GRADATION_CYCLES)
  128. print("循环识别")
  129. xunhuan = 0
  130. while k:
  131. xunhuan += 1
  132. if settings.app:
  133. settings.app.processEvents()
  134. k -= 1
  135. Midtones += 0.035
  136. if Midtones > 1.7:
  137. Midtones = 1.7
  138. Highlight -= 3
  139. _im_shadow = levels_adjust(
  140. img=im_shadow,
  141. Shadow=0,
  142. Midtones=Midtones,
  143. Highlight=Highlight,
  144. OutShadow=0,
  145. OutHighlight=255,
  146. Dim=3,
  147. )
  148. brightness_list = calculate_average_brightness_opencv(
  149. img_gray=_im_shadow, rows_to_check=rows
  150. )
  151. print(
  152. "循环识别:{},Midtones:{},Highlight:{},brightness_list:{}".format(
  153. xunhuan, Midtones, Highlight, brightness_list
  154. )
  155. )
  156. if brightness_list[0] >= settings.GRENERATE_MAIN_PIC_BRIGHTNESS:
  157. break
  158. im_shadow = cv2_to_pil(_im_shadow)
  159. # ========================================================
  160. # 计算阴影的亮度,用于确保阴影不要太黑
  161. # 1、图片预处理,只保留阴影
  162. only_shadow_img = im_shadow.copy()
  163. only_shadow_img.paste(
  164. Image.new(
  165. mode="RGBA", size=only_shadow_img.size, color=(255, 255, 255, 255)
  166. ),
  167. mask=im_png,
  168. )
  169. average_brightness = calculated_shadow_brightness(only_shadow_img)
  170. print("average_brightness:", average_brightness)
  171. config = {
  172. "Midtones": Midtones,
  173. "Highlight": Highlight,
  174. "average_brightness": average_brightness,
  175. }
  176. return mask, config
  177. def get_mask_and_config_1_2025_05_18(self, im_jpg: Image, im_png: Image):
  178. """
  179. 步骤:
  180. 1、尺寸进行对应缩小
  181. 2、查找并设定鞋底阴影蒙版
  182. 3、自动色阶检查亮度
  183. 4、输出自动色阶参数、以及放大的尺寸蒙版
  184. """
  185. # ===================尺寸进行对应缩小(提升处理速度)
  186. im_jpg = to_resize(im_jpg, width=800)
  187. im_png = to_resize(im_png, width=800)
  188. x1, y1, x2, y2 = im_png.getbbox()
  189. cv2_png = pil_to_cv2(im_png)
  190. # =====================设定鞋底阴影图的蒙版
  191. # 查找每列的最低非透明点
  192. min_y_values = find_lowest_non_transparent_points(cv2_png)
  193. # 在鞋底最低处增加一条直线蒙版,蒙版宽度为有效区域大小
  194. image_high = im_jpg.height
  195. print("图片高度:", image_high)
  196. cv2_jpg = pil_to_cv2(im_jpg)
  197. # 返回线条图片,以及最低位置
  198. print("返回线条图片,以及最低位置")
  199. img_with_shifted_line, lowest_y = draw_shifted_line(
  200. image=cv2_jpg,
  201. min_y_values=min_y_values,
  202. shift_amount=15,
  203. one_line_pos=(x1, x2),
  204. line_color=(0, 0, 0),
  205. line_thickness=20,
  206. app=settings.app,
  207. crop_image_box=(x1, y1, x2, y2),
  208. )
  209. print("66 制作蒙版")
  210. # 制作蒙版
  211. mask_line = cv2_to_pil(img_with_shifted_line)
  212. mask = mask_line.convert("L") # 转换为灰度图
  213. mask = ImageOps.invert(mask)
  214. # 蒙版扩边
  215. print("72 蒙版扩边")
  216. # 默认expansion_radius 65 blur_radius 45
  217. mask = expand_or_shrink_mask(
  218. pil_image=mask, expansion_radius=50, blur_radius=35
  219. )
  220. # mask1 = expand_mask(mask, expansion_radius=30, blur_radius=10)
  221. # mask1.save("mask1.png")
  222. # mask2 = expand_or_shrink_mask(pil_image=mask, expansion_radius=60, blur_radius=30)
  223. # mask2.save("mask2.png")
  224. # raise 11
  225. # ====================生成新的图片
  226. print("84 生成新的图片")
  227. bg = Image.new(mode="RGBA", size=im_png.size, color=(255, 255, 255, 255))
  228. bg.paste(im_png, mask=im_png)
  229. bg.paste(im_jpg, mask=mask) # 粘贴有阴影的地方
  230. if self.is_test:
  231. _bg = bg.copy()
  232. draw = ImageDraw.Draw(_bg)
  233. # 定义直线的起点和终点坐标
  234. start_point = (0, lowest_y) # 直线的起始点
  235. end_point = (_bg.width, lowest_y) # 直线的结束点
  236. # 定义直线的颜色(R, G, B)
  237. line_color = (255, 0, 0) # 红色
  238. # 绘制直线
  239. draw.line([start_point, end_point], fill=line_color, width=1)
  240. # mask.show()
  241. # bg = pil_to_cv2(bg)
  242. # cv2.line(bg, (x1, lowest_y + 5), (x2, lowest_y + 5), color=(0, 0, 0),thickness=2)
  243. # bg = cv2_to_pil(bg)
  244. _r = Image.new(mode="RGBA", size=im_png.size, color=(246, 147, 100, 255))
  245. mask_line = mask_line.convert("L") # 转换为灰度图
  246. mask_line = ImageOps.invert(mask_line)
  247. _bg.paste(_r, mask=mask)
  248. _bg.show()
  249. # bg.save(r"C:\Users\gymmc\Desktop\data\bg.png")
  250. # bg.show()
  251. # ==================自动色阶处理======================
  252. # 对上述拼接后的图片进行自动色阶处理
  253. bg = bg.convert("RGB")
  254. _im = cv2.cvtColor(np.asarray(bg), cv2.COLOR_RGB2BGR)
  255. # 背景阴影
  256. im_shadow = cv2.cvtColor(_im, cv2.COLOR_BGR2GRAY)
  257. print("image_high lowest_y", image_high, lowest_y)
  258. if lowest_y < 0 or lowest_y >= image_high:
  259. lowest_y = image_high - 1
  260. print("image_high lowest_y", image_high, lowest_y)
  261. rows = [lowest_y] # 需要检查的像素行
  262. print("copy.copy(im_shadow)")
  263. _im_shadow = copy.copy(im_shadow)
  264. Midtones = 0.7
  265. Highlight = 235
  266. k = 12
  267. print("循环识别")
  268. while k:
  269. print("循环识别:{}".format(k))
  270. if settings.app:
  271. settings.app.processEvents()
  272. k -= 1
  273. Midtones += 0.1
  274. if Midtones > 1:
  275. Midtones = 1
  276. Highlight -= 3
  277. _im_shadow = levels_adjust(
  278. img=im_shadow,
  279. Shadow=0,
  280. Midtones=Midtones,
  281. Highlight=Highlight,
  282. OutShadow=0,
  283. OutHighlight=255,
  284. Dim=3,
  285. )
  286. brightness_list = calculate_average_brightness_opencv(
  287. img_gray=_im_shadow, rows_to_check=rows
  288. )
  289. print(brightness_list)
  290. if brightness_list[0] >= settings.GRENERATE_MAIN_PIC_BRIGHTNESS:
  291. break
  292. print("Midtones,Highlight:", Midtones, Highlight)
  293. im_shadow = cv2_to_pil(_im_shadow)
  294. # ========================================================
  295. # 计算阴影的亮度,用于确保阴影不要太黑
  296. # 1、图片预处理,只保留阴影
  297. only_shadow_img = im_shadow.copy()
  298. only_shadow_img.paste(
  299. Image.new(
  300. mode="RGBA", size=only_shadow_img.size, color=(255, 255, 255, 255)
  301. ),
  302. mask=im_png,
  303. )
  304. average_brightness = calculated_shadow_brightness(only_shadow_img)
  305. print("average_brightness:", average_brightness)
  306. config = {
  307. "Midtones": Midtones,
  308. "Highlight": Highlight,
  309. "average_brightness": average_brightness,
  310. }
  311. return mask, config
  312. def my_test(self, **kwargs):
  313. if "output_queue" in kwargs:
  314. output_queue = kwargs["output_queue"]
  315. else:
  316. output_queue = None
  317. time.sleep(3)
  318. if output_queue is not None:
  319. output_queue.put(True)
  320. @time_it
  321. def run(
  322. self,
  323. image_path,
  324. cut_image_path,
  325. out_path,
  326. image_deal_mode=0,
  327. image_index=99,
  328. out_pic_size=1024,
  329. is_logo=True,
  330. out_process_path_1=None,
  331. out_process_path_2=None,
  332. resize_mode=None,
  333. max_box=None,
  334. logo_path="",
  335. curve_mask=False,
  336. **kwargs,
  337. ): # im 为cv对象
  338. """
  339. image_path:原始图
  340. cut_image_path:抠图结果 与原始图尺寸相同
  341. out_path:输出主图路径
  342. image_deal_mode:图片处理模式,1表示需要镜像处理
  343. image_index:图片顺序索引
  344. out_pic_size:输出图片宽度大小
  345. is_logo=True 是否要添加logo水印
  346. out_process_path_1=None, 有阴影的图片,白底非透明
  347. out_process_path_2=None, 已抠图的图片
  348. resize_mode=0,1,2 主体缩小尺寸
  349. curve_mask 为True时,表示为对鞋曲线部分的mask,不做剪裁
  350. """
  351. if "output_queue" in kwargs:
  352. output_queue = kwargs["output_queue"]
  353. else:
  354. output_queue = None
  355. # ==========先进行剪切原图
  356. _s = time.time()
  357. orign_im = Image.open(image_path) # 原始图
  358. print("242 need_time_1:{}".format(time.time() - _s))
  359. orign_x, orign_y = orign_im.size
  360. cut_image = Image.open(cut_image_path) # 原始图的已扣图
  361. cut_image, new_box = get_mini_crop_img(img=cut_image)
  362. im_shadow = orign_im.crop(new_box) # 切图
  363. new_x, new_y = im_shadow.size
  364. # ================自动色阶处理
  365. _s = time.time()
  366. shadow_mask, config = self.get_mask_and_config(
  367. im_jpg=im_shadow, im_png=cut_image, curve_mask=curve_mask
  368. )
  369. print("242 need_time_2:{}".format(time.time() - _s))
  370. shadow_mask = shadow_mask.resize(im_shadow.size)
  371. # =====抠图,形成新的阴影背景图=====
  372. _new_im_shadow = Image.new(
  373. mode="RGBA", size=im_shadow.size, color=(255, 255, 255, 255)
  374. )
  375. _new_im_shadow.paste(im_shadow, mask=shadow_mask) # 粘贴有阴影的地方
  376. # _new_im_shadow.show()
  377. _new_im_shadow = pil_to_cv2(_new_im_shadow)
  378. _new_im_shadow = cv2.cvtColor(_new_im_shadow, cv2.COLOR_BGR2GRAY)
  379. _new_im_shadow = levels_adjust(
  380. img=_new_im_shadow,
  381. Shadow=0,
  382. Midtones=config["Midtones"],
  383. Highlight=config["Highlight"],
  384. OutShadow=0,
  385. OutHighlight=255,
  386. Dim=3,
  387. )
  388. im_shadow = cv2_to_pil(_new_im_shadow)
  389. # ================处理阴影的亮度==================
  390. average_brightness = config["average_brightness"]
  391. if config["average_brightness"] < 180:
  392. # 调整阴影亮度
  393. backdrop_prepped = np.asfarray(
  394. Image.new(mode="RGBA", size=im_shadow.size, color=(255, 255, 255, 255))
  395. )
  396. im_shadow = im_shadow.convert("RGBA")
  397. source_prepped = np.asfarray(im_shadow)
  398. # im_shadow.show()
  399. opacity = (average_brightness - 30) / 160
  400. opacity = max(0.5, min(opacity, 1))
  401. print("阴影透明度:{}%".format(int(opacity * 100)))
  402. blended_np = multiply(
  403. backdrop_prepped, source_prepped, opacity=int(opacity * 100) / 100
  404. )
  405. im_shadow = Image.fromarray(np.uint8(blended_np)).convert("RGB")
  406. # im_shadow.show()
  407. # 把原图粘贴回去,避免色差
  408. im_shadow.paste(cut_image, (0, 0), mask=cut_image)
  409. # _new_im_shadow.show()
  410. # ===========处理其他====================
  411. # 保存带有阴影的底图,没有logo
  412. if out_process_path_1:
  413. out_image_1 = im_shadow.copy()
  414. if image_deal_mode == 1:
  415. out_image_1 = out_image_1.transpose(Image.FLIP_LEFT_RIGHT)
  416. self.saver.save_image(
  417. image=out_image_1, file_path=out_process_path_1, save_mode="png"
  418. )
  419. # save_image_by_thread(image=out_image_1, out_path=out_process_path_1)
  420. # out_image_1.save(out_process_path_1)
  421. # 保存抠图结果,没有底图,没有logo
  422. if out_process_path_2:
  423. out_image_2 = cut_image.copy()
  424. if image_deal_mode == 1:
  425. out_image_2 = out_image_2.transpose(Image.FLIP_LEFT_RIGHT)
  426. self.saver.save_image(
  427. image=out_image_2, file_path=out_process_path_2, save_mode="png"
  428. )
  429. # save_image_by_thread(image=out_image_2, out_path=out_process_path_2, save_mode="png")
  430. # out_image_2.save(out_process_path_2)
  431. # 不生成主图时直接退出
  432. if not out_path:
  433. return True
  434. # im_shadow.show()
  435. # =====================主图物体的缩放依据大小
  436. if max_box:
  437. im_shadow = to_resize(_im=im_shadow, width=max_box[0], high=max_box[1])
  438. cut_image = to_resize(_im=cut_image, width=max_box[0], high=max_box[1])
  439. else:
  440. if resize_mode is None:
  441. im_shadow = to_resize(_im=im_shadow, width=1400, high=1400)
  442. cut_image = to_resize(_im=cut_image, width=1400, high=1400)
  443. elif resize_mode == 1:
  444. im_shadow = to_resize(_im=im_shadow, width=1400, high=1400)
  445. cut_image = to_resize(_im=cut_image, width=1400, high=1400)
  446. elif resize_mode == 2:
  447. # todo 兼容长筒靴等,将图片大小限制在一个指定的box内
  448. im_shadow = to_resize(_im=im_shadow, width=650)
  449. cut_image = to_resize(_im=cut_image, width=650)
  450. # 再次检查需要约束缩小到一定高度,适应长筒靴
  451. _im_x, _im_y = cut_image.size
  452. if _im_y > 1400:
  453. im_shadow = to_resize(_im=im_shadow, high=1400)
  454. cut_image = to_resize(_im=cut_image, high=1400)
  455. # if im_shadow.height <= im_shadow.width * 1.2:
  456. # im_shadow = to_resize(_im=im_shadow, width=650)
  457. # cut_image = to_resize(_im=cut_image, width=650)
  458. # else:
  459. # im_shadow = to_resize(_im=im_shadow, high=1400)
  460. # cut_image = to_resize(_im=cut_image, high=1400)
  461. if image_deal_mode == 1:
  462. # 翻转
  463. im_shadow = im_shadow.transpose(Image.FLIP_LEFT_RIGHT)
  464. cut_image = cut_image.transpose(Image.FLIP_LEFT_RIGHT)
  465. # 创建底层背景
  466. image_bg = Image.new("RGB", (1600, 1600), (255, 255, 255))
  467. image_bg_x, image_bg_y = image_bg.size
  468. image_x, image_y = im_shadow.size
  469. _x = int((image_bg_x - image_x) / 2)
  470. _y = int((image_bg_y - image_y) / 2)
  471. image_bg.paste(im_shadow, (_x, _y))
  472. image_bg.paste(cut_image, (_x, _y), cut_image) # 再叠加原图避免色差
  473. if "小苏" in settings.Company:
  474. # 所有主图加logo
  475. is_logo = True
  476. if is_logo:
  477. # logo_path = ""
  478. # if settings.PROJECT == "红蜻蜓":
  479. # logo_path = r"resources\LOGO\HQT\logo.png"
  480. # elif settings.PROJECT == "惠利玛":
  481. # if "小苏" in settings.Company:
  482. # logo_path = r"resources\LOGO\xiaosushuoxie\logo.png"
  483. # elif "惠利玛" in settings.Company:
  484. # logo_path = r"resources\LOGO\HLM\logo.png"
  485. # else:
  486. # pass
  487. if not logo_path:
  488. logo_im = Image.new("RGBA", (1600, 1600), (0, 0, 0, 0))
  489. else:
  490. if os.path.exists(logo_path):
  491. logo_im = Image.open(logo_path)
  492. else:
  493. logo_im = Image.new("RGBA", (1600, 1600), (0, 0, 0, 0))
  494. image_bg.paste(logo_im, (0, 0), logo_im)
  495. # image_bg = image_bg.resize((out_pic_size, out_pic_size), Image.BICUBIC)
  496. if settings.OUT_PIC_FACTOR > 1.0:
  497. print("图片锐化处理")
  498. image_bg = sharpen_image(image_bg, factor=settings.OUT_PIC_FACTOR)
  499. if out_pic_size < 1600:
  500. image_bg = image_bg.resize(
  501. (out_pic_size, out_pic_size), resample=settings.RESIZE_IMAGE_MODE
  502. )
  503. if settings.OUT_PIC_MODE == ".jpg":
  504. if settings.OUT_PIC_QUALITY == "普通":
  505. self.saver.save_image(
  506. image=image_bg,
  507. file_path=out_path,
  508. save_mode="jpg",
  509. quality=None,
  510. dpi=None,
  511. _format="JPEG",
  512. )
  513. # save_image_by_thread(image_bg, out_path, save_mode="jpg", quality=None, dpi=None, _format="JPEG")
  514. # image_bg.save(out_path, format="JPEG")
  515. else:
  516. self.saver.save_image(
  517. image=image_bg,
  518. file_path=out_path,
  519. save_mode="jpg",
  520. quality=100,
  521. dpi=(300, 300),
  522. _format="JPEG",
  523. )
  524. # save_image_by_thread(image_bg, out_path, save_mode="jpg", quality=100, dpi=(300, 300), _format="JPEG")
  525. # image_bg.save(out_path, quality=100, dpi=(300, 300), format="JPEG")
  526. else:
  527. self.saver.save_image(image=image_bg, file_path=out_path, save_mode="png")
  528. # image_bg.save(out_path)
  529. if output_queue is not None:
  530. output_queue.put(True)
  531. return True