grenerate_main_image_test.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446
  1. import os
  2. import copy
  3. import time
  4. from .image_deal_base_func import *
  5. from PIL import Image, ImageDraw
  6. from blend_modes import multiply
  7. import os
  8. import settings
  9. from functools import wraps
  10. def time_it(func):
  11. @wraps(func) # 使用wraps来保留原始函数的元数据信息
  12. def wrapper(*args, **kwargs):
  13. start_time = time.time() # 记录开始时间
  14. result = func(*args, **kwargs) # 调用原始函数
  15. end_time = time.time() # 记录结束时间
  16. print(f"Executing {func.__name__} took {end_time - start_time:.4f} seconds.") # 打印耗时
  17. return result
  18. return wrapper
  19. class GeneratePic(object):
  20. def __init__(self, is_test=False):
  21. # self.logger = MyLogger()
  22. self.is_test = is_test
  23. pass
  24. @time_it
  25. def get_mask_and_config(self, im_jpg: Image, im_png: Image):
  26. """
  27. 步骤:
  28. 1、尺寸进行对应缩小
  29. 2、查找并设定鞋底阴影蒙版
  30. 3、自动色阶检查亮度
  31. 4、输出自动色阶参数、以及放大的尺寸蒙版
  32. """
  33. # ===================尺寸进行对应缩小(提升处理速度)
  34. im_jpg = to_resize(im_jpg, width=800)
  35. im_png = to_resize(im_png, width=800)
  36. x1, y1, x2, y2 = im_png.getbbox()
  37. cv2_png = pil_to_cv2(im_png)
  38. # =====================设定鞋底阴影图的蒙版
  39. # 查找每列的最低非透明点
  40. min_y_values = find_lowest_non_transparent_points(cv2_png)
  41. # 在鞋底最低处增加一条直线蒙版,蒙版宽度为有效区域大小
  42. image_high = im_jpg.height
  43. print("图片高度:", image_high)
  44. # TODO 待移除
  45. settings.app.processEvents()
  46. cv2_jpg = pil_to_cv2(im_jpg)
  47. # 返回线条图片,以及最低位置
  48. print("返回线条图片,以及最低位置")
  49. img_with_shifted_line, lowest_y = draw_shifted_line(image=cv2_jpg,
  50. min_y_values=min_y_values,
  51. shift_amount=15,
  52. one_line_pos=(x1, x2),
  53. line_color=(0, 0, 0),
  54. line_thickness=20,
  55. app=settings.app)
  56. # TODO 待移除
  57. settings.app.processEvents()
  58. print("66 制作蒙版")
  59. # 制作蒙版
  60. mask_line = cv2_to_pil(img_with_shifted_line)
  61. mask = mask_line.convert('L') # 转换为灰度图
  62. mask = ImageOps.invert(mask)
  63. # 蒙版扩边
  64. print("72 蒙版扩边")
  65. mask = expand_or_shrink_mask(pil_image=mask, expansion_radius=65, blur_radius=35)
  66. # mask1 = expand_mask(mask, expansion_radius=30, blur_radius=10)
  67. # mask1.save("mask1.png")
  68. # mask2 = expand_or_shrink_mask(pil_image=mask, expansion_radius=60, blur_radius=30)
  69. # mask2.save("mask2.png")
  70. # raise 11
  71. # TODO 待移除
  72. settings.app.processEvents()
  73. # ====================生成新的图片
  74. print("84 生成新的图片")
  75. bg = Image.new(mode="RGBA", size=im_png.size, color=(255, 255, 255, 255))
  76. bg.paste(im_png, mask=im_png)
  77. bg.paste(im_jpg, mask=mask) # 粘贴有阴影的地方
  78. # TODO 待移除
  79. settings.app.processEvents()
  80. if self.is_test:
  81. _bg = bg.copy()
  82. draw = ImageDraw.Draw(_bg)
  83. # 定义直线的起点和终点坐标
  84. start_point = (0, lowest_y) # 直线的起始点
  85. end_point = (_bg.width, lowest_y) # 直线的结束点
  86. # 定义直线的颜色(R, G, B)
  87. line_color = (255, 0, 0) # 红色
  88. # 绘制直线
  89. draw.line([start_point, end_point], fill=line_color, width=1)
  90. # mask.show()
  91. # bg = pil_to_cv2(bg)
  92. # cv2.line(bg, (x1, lowest_y + 5), (x2, lowest_y + 5), color=(0, 0, 0),thickness=2)
  93. # bg = cv2_to_pil(bg)
  94. _r = Image.new(mode="RGBA", size=im_png.size, color=(246, 147, 100, 255))
  95. mask_line = mask_line.convert('L') # 转换为灰度图
  96. mask_line = ImageOps.invert(mask_line)
  97. _bg.paste(_r, mask=mask)
  98. _bg.show()
  99. # bg.save(r"C:\Users\gymmc\Desktop\data\bg.png")
  100. # bg.show()
  101. # ==================自动色阶处理======================
  102. # 对上述拼接后的图片进行自动色阶处理
  103. bg = bg.convert("RGB")
  104. _im = cv2.cvtColor(np.asarray(bg), cv2.COLOR_RGB2BGR)
  105. # 背景阴影
  106. im_shadow = cv2.cvtColor(_im, cv2.COLOR_BGR2GRAY)
  107. print("image_high lowest_y", image_high, lowest_y)
  108. if lowest_y < 0 or lowest_y >= image_high:
  109. lowest_y = image_high - 1
  110. print("image_high lowest_y", image_high, lowest_y)
  111. rows = [lowest_y] # 需要检查的像素行
  112. print("copy.copy(im_shadow)")
  113. _im_shadow = copy.copy(im_shadow)
  114. Midtones = 0.7
  115. Highlight = 235
  116. k = 8
  117. print("循环识别")
  118. while k:
  119. # TODO 待移除
  120. print("循环识别:{}".format(k))
  121. settings.app.processEvents()
  122. k -= 1
  123. Midtones += 0.1
  124. if Midtones > 1:
  125. Midtones = 1
  126. Highlight -= 3
  127. _im_shadow = levels_adjust(img=im_shadow, Shadow=0, Midtones=Midtones, Highlight=Highlight,
  128. OutShadow=0,
  129. OutHighlight=255, Dim=3)
  130. brightness_list = calculate_average_brightness_opencv(img_gray=_im_shadow, rows_to_check=rows)
  131. print(brightness_list)
  132. if brightness_list[0] >= settings.GRENERATE_MAIN_PIC_BRIGHTNESS:
  133. break
  134. print("Midtones,Highlight:", Midtones, Highlight)
  135. im_shadow = cv2_to_pil(_im_shadow)
  136. # ========================================================
  137. # 计算阴影的亮度,用于确保阴影不要太黑
  138. # 1、图片预处理,只保留阴影
  139. only_shadow_img = im_shadow.copy()
  140. only_shadow_img.paste(Image.new(mode="RGBA", size=only_shadow_img.size, color=(255, 255, 255, 255)),
  141. mask=im_png)
  142. average_brightness = calculated_shadow_brightness(only_shadow_img)
  143. print("average_brightness:", average_brightness)
  144. config = {
  145. "Midtones": Midtones,
  146. "Highlight": Highlight,
  147. "average_brightness": average_brightness,
  148. }
  149. return mask, config
  150. def get_mask_and_config_beifen(self, im_jpg: Image, im_png: Image, out_image_path=None):
  151. """
  152. 步骤:
  153. 1、尺寸进行对应缩小
  154. 2、查找并设定鞋底阴影蒙版
  155. 3、自动色阶检查亮度
  156. 4、输出自动色阶参数、以及放大的尺寸蒙版
  157. """
  158. # ===================尺寸进行对应缩小
  159. orign_x, orign_y = im_jpg.size
  160. im_jpg = to_resize(im_jpg, width=800)
  161. im_png = to_resize(im_png, width=800)
  162. x1, y1, x2, y2 = im_png.getbbox()
  163. cv2_png = pil_to_cv2(im_png)
  164. # =====================设定鞋底阴影图的蒙版
  165. # 查找每列的最低非透明点
  166. min_y_values = find_lowest_non_transparent_points(cv2_png)
  167. # 在鞋底最低处增加一条直线蒙版,蒙版宽度为有效区域大小
  168. cv2_jpg = pil_to_cv2(im_jpg)
  169. # 返回线条图片,以及最低位置
  170. img_with_shifted_line, lowest_y = draw_shifted_line(image=cv2_jpg,
  171. min_y_values=min_y_values,
  172. shift_amount=15,
  173. one_line_pos=(x1, x2),
  174. line_color=(0, 0, 0),
  175. line_thickness=20)
  176. # 制作蒙版
  177. mask = cv2_to_pil(img_with_shifted_line)
  178. mask = mask.convert('L') # 转换为灰度图
  179. mask = ImageOps.invert(mask)
  180. # 蒙版扩边
  181. mask = expand_mask(mask, expansion_radius=30, blur_radius=10)
  182. # ====================生成新的图片
  183. bg = Image.new(mode="RGBA", size=im_png.size, color=(255, 255, 255, 255))
  184. bg.paste(im_png, mask=im_png)
  185. bg.paste(im_jpg, mask=mask) # 粘贴有阴影的地方
  186. # bg = pil_to_cv2(bg)
  187. # cv2.line(bg, (x1, lowest_y + 5), (x2, lowest_y + 5), color=(0, 0, 0),thickness=2)
  188. # bg = cv2_to_pil(bg)
  189. # bg.show()
  190. # bg.save(r"C:\Users\gymmc\Desktop\data\bg.png")
  191. # bg.show()
  192. # ==================自动色阶处理======================
  193. # 对上述拼接后的图片进行自动色阶处理
  194. bg = bg.convert("RGB")
  195. _im = cv2.cvtColor(np.asarray(bg), cv2.COLOR_RGB2BGR)
  196. # 背景阴影
  197. im_shadow = cv2.cvtColor(_im, cv2.COLOR_BGR2GRAY)
  198. rows = [lowest_y] # 需要检查的像素行
  199. _im_shadow = copy.copy(im_shadow)
  200. Midtones = 0.62
  201. Highlight = 235
  202. k = 10
  203. while k:
  204. k -= 1
  205. Midtones += 0.1
  206. if Midtones > 1:
  207. Midtones = 1
  208. Highlight -= 3
  209. _im_shadow = levels_adjust(img=im_shadow, Shadow=0, Midtones=Midtones, Highlight=Highlight,
  210. OutShadow=0,
  211. OutHighlight=255, Dim=3)
  212. brightness_list = calculate_average_brightness_opencv(img_gray=_im_shadow, rows_to_check=rows)
  213. print(brightness_list)
  214. if brightness_list[0] >= 254:
  215. break
  216. print("Midtones,Highlight:", Midtones, Highlight)
  217. config = (Midtones, Highlight)
  218. im_shadow = cv2_to_pil(_im_shadow)
  219. im_shadow.paste(im_png, (0, 0), im_png) # 把原图粘贴回去,避免色差
  220. if out_image_path:
  221. im_shadow.save(out_image_path)
  222. return mask, config
  223. def my_test(self, **kwargs):
  224. if "output_queue" in kwargs:
  225. output_queue = kwargs["output_queue"]
  226. else:
  227. output_queue = None
  228. time.sleep(3)
  229. if output_queue is not None:
  230. output_queue.put(True)
  231. @time_it
  232. def run(self, image_path, cut_image_path, out_path, image_deal_mode=0, image_index=99,
  233. out_pic_size=1024, is_logo=True, out_process_path_1=None, out_process_path_2=None,
  234. resize_mode=None, max_box=None, logo_path="", **kwargs): # im 为cv对象
  235. """
  236. image_path:原始图
  237. cut_image_path:抠图结果 与原始图尺寸相同
  238. out_path:输出主图路径
  239. image_deal_mode:图片处理模式,1表示需要镜像处理
  240. image_index:图片顺序索引
  241. out_pic_size:输出图片宽度大小
  242. is_logo=True 是否要添加logo水印
  243. out_process_path_1=None, 有阴影的图片,白底非透明
  244. out_process_path_2=None, 已抠图的图片
  245. resize_mode=0,1,2 主体缩小尺寸
  246. """
  247. if "output_queue" in kwargs:
  248. output_queue = kwargs["output_queue"]
  249. else:
  250. output_queue = None
  251. # ==========先进行剪切原图
  252. _s = time.time()
  253. orign_im = Image.open(image_path) # 原始图
  254. print("242 need_time_1:{}".format(time.time() - _s))
  255. orign_x, orign_y = orign_im.size
  256. cut_image = Image.open(cut_image_path) # 原始图的已扣图
  257. cut_image, new_box = get_mini_crop_img(img=cut_image)
  258. im_shadow = orign_im.crop(new_box) # 切图
  259. new_x, new_y = im_shadow.size
  260. # ================自动色阶处理
  261. _s = time.time()
  262. shadow_mask, config = self.get_mask_and_config(im_jpg=im_shadow, im_png=cut_image)
  263. print("242 need_time_2:{}".format(time.time() - _s))
  264. shadow_mask = shadow_mask.resize(im_shadow.size)
  265. # =====抠图,形成新的阴影背景图=====
  266. # TODO 待移除
  267. settings.app.processEvents()
  268. _new_im_shadow = Image.new(mode="RGBA", size=im_shadow.size, color=(255, 255, 255, 255))
  269. _new_im_shadow.paste(im_shadow, mask=shadow_mask) # 粘贴有阴影的地方
  270. # _new_im_shadow.show()
  271. _new_im_shadow = pil_to_cv2(_new_im_shadow)
  272. _new_im_shadow = cv2.cvtColor(_new_im_shadow, cv2.COLOR_BGR2GRAY)
  273. _new_im_shadow = levels_adjust(img=_new_im_shadow,
  274. Shadow=0,
  275. Midtones=config["Midtones"],
  276. Highlight=config["Highlight"],
  277. OutShadow=0,
  278. OutHighlight=255, Dim=3)
  279. im_shadow = cv2_to_pil(_new_im_shadow)
  280. # ================处理阴影的亮度==================
  281. average_brightness = config["average_brightness"]
  282. if config["average_brightness"] < 180:
  283. # 调整阴影亮度
  284. backdrop_prepped = np.asfarray(Image.new(mode="RGBA", size=im_shadow.size, color=(255, 255, 255, 255)))
  285. im_shadow = im_shadow.convert("RGBA")
  286. source_prepped = np.asfarray(im_shadow)
  287. # im_shadow.show()
  288. opacity = (average_brightness - 30) / 160
  289. opacity = max(0.5, min(opacity, 1))
  290. print("阴影透明度:{}%".format(int(opacity * 100)))
  291. blended_np = multiply(backdrop_prepped, source_prepped, opacity=int(opacity * 100) / 100)
  292. im_shadow = Image.fromarray(np.uint8(blended_np)).convert('RGB')
  293. # im_shadow.show()
  294. # 把原图粘贴回去,避免色差
  295. im_shadow.paste(cut_image, (0, 0), mask=cut_image)
  296. # _new_im_shadow.show()
  297. # ===========处理其他====================
  298. # 保存带有阴影的底图,没有logo
  299. if out_process_path_1:
  300. out_image_1 = im_shadow.copy()
  301. if image_deal_mode == 1:
  302. out_image_1 = out_image_1.transpose(Image.FLIP_LEFT_RIGHT)
  303. out_image_1.save(out_process_path_1)
  304. # 保存抠图结果,没有底图,没有logo
  305. if out_process_path_2:
  306. out_image_2 = cut_image.copy()
  307. if image_deal_mode == 1:
  308. out_image_2 = out_image_2.transpose(Image.FLIP_LEFT_RIGHT)
  309. out_image_2.save(out_process_path_2)
  310. # 不生成主图时直接退出
  311. if not out_path:
  312. return True
  313. # im_shadow.show()
  314. # =====================主图物体的缩放依据大小
  315. if max_box:
  316. im_shadow = to_resize(_im=im_shadow, width=max_box[0], high=max_box[1])
  317. cut_image = to_resize(_im=cut_image, width=max_box[0], high=max_box[1])
  318. else:
  319. if resize_mode is None:
  320. im_shadow = to_resize(_im=im_shadow, width=1400, high=1400)
  321. cut_image = to_resize(_im=cut_image, width=1400, high=1400)
  322. elif resize_mode == 1:
  323. im_shadow = to_resize(_im=im_shadow, width=1400, high=1400)
  324. cut_image = to_resize(_im=cut_image, width=1400, high=1400)
  325. elif resize_mode == 2:
  326. # todo 兼容长筒靴等,将图片大小限制在一个指定的box内
  327. im_shadow = to_resize(_im=im_shadow, width=650)
  328. cut_image = to_resize(_im=cut_image, width=650)
  329. # 再次检查需要约束缩小到一定高度,适应长筒靴
  330. _im_x, _im_y = cut_image.size
  331. if _im_y > 1400:
  332. im_shadow = to_resize(_im=im_shadow, high=1400)
  333. cut_image = to_resize(_im=cut_image, high=1400)
  334. # if im_shadow.height <= im_shadow.width * 1.2:
  335. # im_shadow = to_resize(_im=im_shadow, width=650)
  336. # cut_image = to_resize(_im=cut_image, width=650)
  337. # else:
  338. # im_shadow = to_resize(_im=im_shadow, high=1400)
  339. # cut_image = to_resize(_im=cut_image, high=1400)
  340. if image_deal_mode == 1:
  341. # 翻转
  342. im_shadow = im_shadow.transpose(Image.FLIP_LEFT_RIGHT)
  343. cut_image = cut_image.transpose(Image.FLIP_LEFT_RIGHT)
  344. # 创建底层背景
  345. image_bg = Image.new("RGB", (1600, 1600), (255, 255, 255))
  346. image_bg_x, image_bg_y = image_bg.size
  347. image_x, image_y = im_shadow.size
  348. _x = int((image_bg_x - image_x) / 2)
  349. _y = int((image_bg_y - image_y) / 2)
  350. image_bg.paste(im_shadow, (_x, _y))
  351. image_bg.paste(cut_image, (_x, _y), cut_image) # 再叠加原图避免色差
  352. if "小苏" in settings.Company:
  353. # 所有主图加logo
  354. is_logo = True
  355. if is_logo:
  356. # logo_path = ""
  357. # if settings.PROJECT == "红蜻蜓":
  358. # logo_path = r"resources\LOGO\HQT\logo.png"
  359. # elif settings.PROJECT == "惠利玛":
  360. # if "小苏" in settings.Company:
  361. # logo_path = r"resources\LOGO\xiaosushuoxie\logo.png"
  362. # elif "惠利玛" in settings.Company:
  363. # logo_path = r"resources\LOGO\HLM\logo.png"
  364. # else:
  365. # pass
  366. if not logo_path:
  367. logo_im = Image.new("RGBA", (1600, 1600), (0, 0, 0, 0))
  368. else:
  369. if os.path.exists(logo_path):
  370. logo_im = Image.open(logo_path)
  371. else:
  372. logo_im = Image.new("RGBA", (1600, 1600), (0, 0, 0, 0))
  373. image_bg.paste(logo_im, (0, 0), logo_im)
  374. # image_bg = image_bg.resize((out_pic_size, out_pic_size), Image.BICUBIC)
  375. if settings.OUT_PIC_FACTOR > 1.0:
  376. print("图片锐化处理")
  377. image_bg = sharpen_image(image_bg, factor=settings.OUT_PIC_FACTOR)
  378. if out_pic_size < 1600:
  379. image_bg = image_bg.resize((out_pic_size, out_pic_size), resample=settings.RESIZE_IMAGE_MODE)
  380. if settings.OUT_PIC_MODE == ".jpg":
  381. image_bg.save(out_path, quality=100, dpi=(300, 300), format="JPEG")
  382. else:
  383. # quality=quality
  384. image_bg.save(out_path, quality=100)
  385. if output_queue is not None:
  386. output_queue.put(True)
  387. return True