123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- from transformers import BertPreTrainedModel, BertConfig
- import torch.nn as nn
- import torch
- from transformers.models.xlm_roberta.configuration_xlm_roberta import XLMRobertaConfig
- from transformers import XLMRobertaModel,XLMRobertaTokenizer
- from typing import Optional
- class BertSeriesConfig(BertConfig):
- def __init__(self, vocab_size=30522, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, pad_token_id=0, position_embedding_type="absolute", use_cache=True, classifier_dropout=None,project_dim=512, pooler_fn="average",learn_encoder=False,model_type='bert',**kwargs):
- super().__init__(vocab_size, hidden_size, num_hidden_layers, num_attention_heads, intermediate_size, hidden_act, hidden_dropout_prob, attention_probs_dropout_prob, max_position_embeddings, type_vocab_size, initializer_range, layer_norm_eps, pad_token_id, position_embedding_type, use_cache, classifier_dropout, **kwargs)
- self.project_dim = project_dim
- self.pooler_fn = pooler_fn
- self.learn_encoder = learn_encoder
- class RobertaSeriesConfig(XLMRobertaConfig):
- def __init__(self, pad_token_id=1, bos_token_id=0, eos_token_id=2,project_dim=512,pooler_fn='cls',learn_encoder=False, **kwargs):
- super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
- self.project_dim = project_dim
- self.pooler_fn = pooler_fn
- self.learn_encoder = learn_encoder
- class BertSeriesModelWithTransformation(BertPreTrainedModel):
- _keys_to_ignore_on_load_unexpected = [r"pooler"]
- _keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
- config_class = BertSeriesConfig
- def __init__(self, config=None, **kargs):
- # modify initialization for autoloading
- if config is None:
- config = XLMRobertaConfig()
- config.attention_probs_dropout_prob= 0.1
- config.bos_token_id=0
- config.eos_token_id=2
- config.hidden_act='gelu'
- config.hidden_dropout_prob=0.1
- config.hidden_size=1024
- config.initializer_range=0.02
- config.intermediate_size=4096
- config.layer_norm_eps=1e-05
- config.max_position_embeddings=514
- config.num_attention_heads=16
- config.num_hidden_layers=24
- config.output_past=True
- config.pad_token_id=1
- config.position_embedding_type= "absolute"
- config.type_vocab_size= 1
- config.use_cache=True
- config.vocab_size= 250002
- config.project_dim = 768
- config.learn_encoder = False
- super().__init__(config)
- self.roberta = XLMRobertaModel(config)
- self.transformation = nn.Linear(config.hidden_size,config.project_dim)
- self.pre_LN=nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
- self.tokenizer = XLMRobertaTokenizer.from_pretrained('xlm-roberta-large')
- self.pooler = lambda x: x[:,0]
- self.post_init()
- def encode(self,c):
- device = next(self.parameters()).device
- text = self.tokenizer(c,
- truncation=True,
- max_length=77,
- return_length=False,
- return_overflowing_tokens=False,
- padding="max_length",
- return_tensors="pt")
- text["input_ids"] = torch.tensor(text["input_ids"]).to(device)
- text["attention_mask"] = torch.tensor(
- text['attention_mask']).to(device)
- features = self(**text)
- return features['projection_state']
- def forward(
- self,
- input_ids: Optional[torch.Tensor] = None,
- attention_mask: Optional[torch.Tensor] = None,
- token_type_ids: Optional[torch.Tensor] = None,
- position_ids: Optional[torch.Tensor] = None,
- head_mask: Optional[torch.Tensor] = None,
- inputs_embeds: Optional[torch.Tensor] = None,
- encoder_hidden_states: Optional[torch.Tensor] = None,
- encoder_attention_mask: Optional[torch.Tensor] = None,
- output_attentions: Optional[bool] = None,
- return_dict: Optional[bool] = None,
- output_hidden_states: Optional[bool] = None,
- ) :
- r"""
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
- outputs = self.roberta(
- input_ids=input_ids,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- output_attentions=output_attentions,
- output_hidden_states=True,
- return_dict=return_dict,
- )
- # last module outputs
- sequence_output = outputs[0]
- # project every module
- sequence_output_ln = self.pre_LN(sequence_output)
- # pooler
- pooler_output = self.pooler(sequence_output_ln)
- pooler_output = self.transformation(pooler_output)
- projection_state = self.transformation(outputs.last_hidden_state)
- return {
- 'pooler_output':pooler_output,
- 'last_hidden_state':outputs.last_hidden_state,
- 'hidden_states':outputs.hidden_states,
- 'attentions':outputs.attentions,
- 'projection_state':projection_state,
- 'sequence_out': sequence_output
- }
- class RobertaSeriesModelWithTransformation(BertSeriesModelWithTransformation):
- base_model_prefix = 'roberta'
- config_class= RobertaSeriesConfig
|