123456789101112131415161718192021222324252627282930313233343536373839404142434445 |
- import html
- import gradio as gr
- import modules.textual_inversion.textual_inversion
- import modules.textual_inversion.preprocess
- from modules import sd_hijack, shared
- def create_embedding(name, initialization_text, nvpt, overwrite_old):
- filename = modules.textual_inversion.textual_inversion.create_embedding(name, nvpt, overwrite_old, init_text=initialization_text)
- sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings()
- return gr.Dropdown.update(choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())), f"Created: {filename}", ""
- def preprocess(*args):
- modules.textual_inversion.preprocess.preprocess(*args)
- return f"Preprocessing {'interrupted' if shared.state.interrupted else 'finished'}.", ""
- def train_embedding(*args):
- assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible'
- apply_optimizations = shared.opts.training_xattention_optimizations
- try:
- if not apply_optimizations:
- sd_hijack.undo_optimizations()
- embedding, filename = modules.textual_inversion.textual_inversion.train_embedding(*args)
- res = f"""
- Training {'interrupted' if shared.state.interrupted else 'finished'} at {embedding.step} steps.
- Embedding saved to {html.escape(filename)}
- """
- return res, ""
- except Exception:
- raise
- finally:
- if not apply_optimizations:
- sd_hijack.apply_optimizations()
|