123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- import base64
- import json
- import warnings
- import numpy as np
- import zlib
- from PIL import Image, ImageDraw
- import torch
- class EmbeddingEncoder(json.JSONEncoder):
- def default(self, obj):
- if isinstance(obj, torch.Tensor):
- return {'TORCHTENSOR': obj.cpu().detach().numpy().tolist()}
- return json.JSONEncoder.default(self, obj)
- class EmbeddingDecoder(json.JSONDecoder):
- def __init__(self, *args, **kwargs):
- json.JSONDecoder.__init__(self, *args, object_hook=self.object_hook, **kwargs)
- def object_hook(self, d):
- if 'TORCHTENSOR' in d:
- return torch.from_numpy(np.array(d['TORCHTENSOR']))
- return d
- def embedding_to_b64(data):
- d = json.dumps(data, cls=EmbeddingEncoder)
- return base64.b64encode(d.encode())
- def embedding_from_b64(data):
- d = base64.b64decode(data)
- return json.loads(d, cls=EmbeddingDecoder)
- def lcg(m=2**32, a=1664525, c=1013904223, seed=0):
- while True:
- seed = (a * seed + c) % m
- yield seed % 255
- def xor_block(block):
- g = lcg()
- randblock = np.array([next(g) for _ in range(np.product(block.shape))]).astype(np.uint8).reshape(block.shape)
- return np.bitwise_xor(block.astype(np.uint8), randblock & 0x0F)
- def style_block(block, sequence):
- im = Image.new('RGB', (block.shape[1], block.shape[0]))
- draw = ImageDraw.Draw(im)
- i = 0
- for x in range(-6, im.size[0], 8):
- for yi, y in enumerate(range(-6, im.size[1], 8)):
- offset = 0
- if yi % 2 == 0:
- offset = 4
- shade = sequence[i % len(sequence)]
- i += 1
- draw.ellipse((x+offset, y, x+6+offset, y+6), fill=(shade, shade, shade))
- fg = np.array(im).astype(np.uint8) & 0xF0
- return block ^ fg
- def insert_image_data_embed(image, data):
- d = 3
- data_compressed = zlib.compress(json.dumps(data, cls=EmbeddingEncoder).encode(), level=9)
- data_np_ = np.frombuffer(data_compressed, np.uint8).copy()
- data_np_high = data_np_ >> 4
- data_np_low = data_np_ & 0x0F
- h = image.size[1]
- next_size = data_np_low.shape[0] + (h-(data_np_low.shape[0] % h))
- next_size = next_size + ((h*d)-(next_size % (h*d)))
- data_np_low = np.resize(data_np_low, next_size)
- data_np_low = data_np_low.reshape((h, -1, d))
- data_np_high = np.resize(data_np_high, next_size)
- data_np_high = data_np_high.reshape((h, -1, d))
- edge_style = list(data['string_to_param'].values())[0].cpu().detach().numpy().tolist()[0][:1024]
- edge_style = (np.abs(edge_style)/np.max(np.abs(edge_style))*255).astype(np.uint8)
- data_np_low = style_block(data_np_low, sequence=edge_style)
- data_np_low = xor_block(data_np_low)
- data_np_high = style_block(data_np_high, sequence=edge_style[::-1])
- data_np_high = xor_block(data_np_high)
- im_low = Image.fromarray(data_np_low, mode='RGB')
- im_high = Image.fromarray(data_np_high, mode='RGB')
- background = Image.new('RGB', (image.size[0]+im_low.size[0]+im_high.size[0]+2, image.size[1]), (0, 0, 0))
- background.paste(im_low, (0, 0))
- background.paste(image, (im_low.size[0]+1, 0))
- background.paste(im_high, (im_low.size[0]+1+image.size[0]+1, 0))
- return background
- def crop_black(img, tol=0):
- mask = (img > tol).all(2)
- mask0, mask1 = mask.any(0), mask.any(1)
- col_start, col_end = mask0.argmax(), mask.shape[1]-mask0[::-1].argmax()
- row_start, row_end = mask1.argmax(), mask.shape[0]-mask1[::-1].argmax()
- return img[row_start:row_end, col_start:col_end]
- def extract_image_data_embed(image):
- d = 3
- outarr = crop_black(np.array(image.convert('RGB').getdata()).reshape(image.size[1], image.size[0], d).astype(np.uint8)) & 0x0F
- black_cols = np.where(np.sum(outarr, axis=(0, 2)) == 0)
- if black_cols[0].shape[0] < 2:
- print('No Image data blocks found.')
- return None
- data_block_lower = outarr[:, :black_cols[0].min(), :].astype(np.uint8)
- data_block_upper = outarr[:, black_cols[0].max()+1:, :].astype(np.uint8)
- data_block_lower = xor_block(data_block_lower)
- data_block_upper = xor_block(data_block_upper)
- data_block = (data_block_upper << 4) | (data_block_lower)
- data_block = data_block.flatten().tobytes()
- data = zlib.decompress(data_block)
- return json.loads(data, cls=EmbeddingDecoder)
- def caption_image_overlay(srcimage, title, footerLeft, footerMid, footerRight, textfont=None):
- from modules.images import get_font
- if textfont:
- warnings.warn(
- 'passing in a textfont to caption_image_overlay is deprecated and does nothing',
- DeprecationWarning,
- stacklevel=2,
- )
- from math import cos
- image = srcimage.copy()
- fontsize = 32
- factor = 1.5
- gradient = Image.new('RGBA', (1, image.size[1]), color=(0, 0, 0, 0))
- for y in range(image.size[1]):
- mag = 1-cos(y/image.size[1]*factor)
- mag = max(mag, 1-cos((image.size[1]-y)/image.size[1]*factor*1.1))
- gradient.putpixel((0, y), (0, 0, 0, int(mag*255)))
- image = Image.alpha_composite(image.convert('RGBA'), gradient.resize(image.size))
- draw = ImageDraw.Draw(image)
- font = get_font(fontsize)
- padding = 10
- _, _, w, h = draw.textbbox((0, 0), title, font=font)
- fontsize = min(int(fontsize * (((image.size[0]*0.75)-(padding*4))/w)), 72)
- font = get_font(fontsize)
- _, _, w, h = draw.textbbox((0, 0), title, font=font)
- draw.text((padding, padding), title, anchor='lt', font=font, fill=(255, 255, 255, 230))
- _, _, w, h = draw.textbbox((0, 0), footerLeft, font=font)
- fontsize_left = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
- _, _, w, h = draw.textbbox((0, 0), footerMid, font=font)
- fontsize_mid = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
- _, _, w, h = draw.textbbox((0, 0), footerRight, font=font)
- fontsize_right = min(int(fontsize * (((image.size[0]/3)-(padding))/w)), 72)
- font = get_font(min(fontsize_left, fontsize_mid, fontsize_right))
- draw.text((padding, image.size[1]-padding), footerLeft, anchor='ls', font=font, fill=(255, 255, 255, 230))
- draw.text((image.size[0]/2, image.size[1]-padding), footerMid, anchor='ms', font=font, fill=(255, 255, 255, 230))
- draw.text((image.size[0]-padding, image.size[1]-padding), footerRight, anchor='rs', font=font, fill=(255, 255, 255, 230))
- return image
- if __name__ == '__main__':
- testEmbed = Image.open('test_embedding.png')
- data = extract_image_data_embed(testEmbed)
- assert data is not None
- data = embedding_from_b64(testEmbed.text['sd-ti-embedding'])
- assert data is not None
- image = Image.new('RGBA', (512, 512), (255, 255, 200, 255))
- cap_image = caption_image_overlay(image, 'title', 'footerLeft', 'footerMid', 'footerRight')
- test_embed = {'string_to_param': {'*': torch.from_numpy(np.random.random((2, 4096)))}}
- embedded_image = insert_image_data_embed(cap_image, test_embed)
- retrived_embed = extract_image_data_embed(embedded_image)
- assert str(retrived_embed) == str(test_embed)
- embedded_image2 = insert_image_data_embed(cap_image, retrived_embed)
- assert embedded_image == embedded_image2
- g = lcg()
- shared_random = np.array([next(g) for _ in range(100)]).astype(np.uint8).tolist()
- reference_random = [253, 242, 127, 44, 157, 27, 239, 133, 38, 79, 167, 4, 177,
- 95, 130, 79, 78, 14, 52, 215, 220, 194, 126, 28, 240, 179,
- 160, 153, 149, 50, 105, 14, 21, 218, 199, 18, 54, 198, 193,
- 38, 128, 19, 53, 195, 124, 75, 205, 12, 6, 145, 0, 28,
- 30, 148, 8, 45, 218, 171, 55, 249, 97, 166, 12, 35, 0,
- 41, 221, 122, 215, 170, 31, 113, 186, 97, 119, 31, 23, 185,
- 66, 140, 30, 41, 37, 63, 137, 109, 216, 55, 159, 145, 82,
- 204, 86, 73, 222, 44, 198, 118, 240, 97]
- assert shared_random == reference_random
- hunna_kay_random_sum = sum(np.array([next(g) for _ in range(100000)]).astype(np.uint8).tolist())
- assert 12731374 == hunna_kay_random_sum
|