123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246 |
- import os
- import numpy as np
- import PIL
- import torch
- from PIL import Image
- from torch.utils.data import Dataset, DataLoader, Sampler
- from torchvision import transforms
- from collections import defaultdict
- from random import shuffle, choices
- import random
- import tqdm
- from modules import devices, shared
- import re
- from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
- re_numbers_at_start = re.compile(r"^[-\d]+\s*")
- class DatasetEntry:
- def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None, cond_text=None, pixel_values=None, weight=None):
- self.filename = filename
- self.filename_text = filename_text
- self.weight = weight
- self.latent_dist = latent_dist
- self.latent_sample = latent_sample
- self.cond = cond
- self.cond_text = cond_text
- self.pixel_values = pixel_values
- class PersonalizedBase(Dataset):
- def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, cond_model=None, device=None, template_file=None, include_cond=False, batch_size=1, gradient_step=1, shuffle_tags=False, tag_drop_out=0, latent_sampling_method='once', varsize=False, use_weight=False):
- re_word = re.compile(shared.opts.dataset_filename_word_regex) if shared.opts.dataset_filename_word_regex else None
- self.placeholder_token = placeholder_token
- self.flip = transforms.RandomHorizontalFlip(p=flip_p)
- self.dataset = []
- with open(template_file, "r") as file:
- lines = [x.strip() for x in file.readlines()]
- self.lines = lines
- assert data_root, 'dataset directory not specified'
- assert os.path.isdir(data_root), "Dataset directory doesn't exist"
- assert os.listdir(data_root), "Dataset directory is empty"
- self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]
- self.shuffle_tags = shuffle_tags
- self.tag_drop_out = tag_drop_out
- groups = defaultdict(list)
- print("Preparing dataset...")
- for path in tqdm.tqdm(self.image_paths):
- alpha_channel = None
- if shared.state.interrupted:
- raise Exception("interrupted")
- try:
- image = Image.open(path)
- #Currently does not work for single color transparency
- #We would need to read image.info['transparency'] for that
- if use_weight and 'A' in image.getbands():
- alpha_channel = image.getchannel('A')
- image = image.convert('RGB')
- if not varsize:
- image = image.resize((width, height), PIL.Image.BICUBIC)
- except Exception:
- continue
- text_filename = f"{os.path.splitext(path)[0]}.txt"
- filename = os.path.basename(path)
- if os.path.exists(text_filename):
- with open(text_filename, "r", encoding="utf8") as file:
- filename_text = file.read()
- else:
- filename_text = os.path.splitext(filename)[0]
- filename_text = re.sub(re_numbers_at_start, '', filename_text)
- if re_word:
- tokens = re_word.findall(filename_text)
- filename_text = (shared.opts.dataset_filename_join_string or "").join(tokens)
- npimage = np.array(image).astype(np.uint8)
- npimage = (npimage / 127.5 - 1.0).astype(np.float32)
- torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32)
- latent_sample = None
- with devices.autocast():
- latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
- #Perform latent sampling, even for random sampling.
- #We need the sample dimensions for the weights
- if latent_sampling_method == "deterministic":
- if isinstance(latent_dist, DiagonalGaussianDistribution):
- # Works only for DiagonalGaussianDistribution
- latent_dist.std = 0
- else:
- latent_sampling_method = "once"
- latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
- if use_weight and alpha_channel is not None:
- channels, *latent_size = latent_sample.shape
- weight_img = alpha_channel.resize(latent_size)
- npweight = np.array(weight_img).astype(np.float32)
- #Repeat for every channel in the latent sample
- weight = torch.tensor([npweight] * channels).reshape([channels] + latent_size)
- #Normalize the weight to a minimum of 0 and a mean of 1, that way the loss will be comparable to default.
- weight -= weight.min()
- weight /= weight.mean()
- elif use_weight:
- #If an image does not have a alpha channel, add a ones weight map anyway so we can stack it later
- weight = torch.ones(latent_sample.shape)
- else:
- weight = None
- if latent_sampling_method == "random":
- entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist, weight=weight)
- else:
- entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample, weight=weight)
- if not (self.tag_drop_out != 0 or self.shuffle_tags):
- entry.cond_text = self.create_text(filename_text)
- if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
- with devices.autocast():
- entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
- groups[image.size].append(len(self.dataset))
- self.dataset.append(entry)
- del torchdata
- del latent_dist
- del latent_sample
- del weight
- self.length = len(self.dataset)
- self.groups = list(groups.values())
- assert self.length > 0, "No images have been found in the dataset."
- self.batch_size = min(batch_size, self.length)
- self.gradient_step = min(gradient_step, self.length // self.batch_size)
- self.latent_sampling_method = latent_sampling_method
- if len(groups) > 1:
- print("Buckets:")
- for (w, h), ids in sorted(groups.items(), key=lambda x: x[0]):
- print(f" {w}x{h}: {len(ids)}")
- print()
- def create_text(self, filename_text):
- text = random.choice(self.lines)
- tags = filename_text.split(',')
- if self.tag_drop_out != 0:
- tags = [t for t in tags if random.random() > self.tag_drop_out]
- if self.shuffle_tags:
- random.shuffle(tags)
- text = text.replace("[filewords]", ','.join(tags))
- text = text.replace("[name]", self.placeholder_token)
- return text
- def __len__(self):
- return self.length
- def __getitem__(self, i):
- entry = self.dataset[i]
- if self.tag_drop_out != 0 or self.shuffle_tags:
- entry.cond_text = self.create_text(entry.filename_text)
- if self.latent_sampling_method == "random":
- entry.latent_sample = shared.sd_model.get_first_stage_encoding(entry.latent_dist).to(devices.cpu)
- return entry
- class GroupedBatchSampler(Sampler):
- def __init__(self, data_source: PersonalizedBase, batch_size: int):
- super().__init__(data_source)
- n = len(data_source)
- self.groups = data_source.groups
- self.len = n_batch = n // batch_size
- expected = [len(g) / n * n_batch * batch_size for g in data_source.groups]
- self.base = [int(e) // batch_size for e in expected]
- self.n_rand_batches = nrb = n_batch - sum(self.base)
- self.probs = [e%batch_size/nrb/batch_size if nrb>0 else 0 for e in expected]
- self.batch_size = batch_size
- def __len__(self):
- return self.len
- def __iter__(self):
- b = self.batch_size
- for g in self.groups:
- shuffle(g)
- batches = []
- for g in self.groups:
- batches.extend(g[i*b:(i+1)*b] for i in range(len(g) // b))
- for _ in range(self.n_rand_batches):
- rand_group = choices(self.groups, self.probs)[0]
- batches.append(choices(rand_group, k=b))
- shuffle(batches)
- yield from batches
- class PersonalizedDataLoader(DataLoader):
- def __init__(self, dataset, latent_sampling_method="once", batch_size=1, pin_memory=False):
- super(PersonalizedDataLoader, self).__init__(dataset, batch_sampler=GroupedBatchSampler(dataset, batch_size), pin_memory=pin_memory)
- if latent_sampling_method == "random":
- self.collate_fn = collate_wrapper_random
- else:
- self.collate_fn = collate_wrapper
- class BatchLoader:
- def __init__(self, data):
- self.cond_text = [entry.cond_text for entry in data]
- self.cond = [entry.cond for entry in data]
- self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
- if all(entry.weight is not None for entry in data):
- self.weight = torch.stack([entry.weight for entry in data]).squeeze(1)
- else:
- self.weight = None
- #self.emb_index = [entry.emb_index for entry in data]
- #print(self.latent_sample.device)
- def pin_memory(self):
- self.latent_sample = self.latent_sample.pin_memory()
- return self
- def collate_wrapper(batch):
- return BatchLoader(batch)
- class BatchLoaderRandom(BatchLoader):
- def __init__(self, data):
- super().__init__(data)
- def pin_memory(self):
- return self
- def collate_wrapper_random(batch):
- return BatchLoaderRandom(batch)
|