123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340 |
- import cv2
- import requests
- import os
- import numpy as np
- from PIL import ImageDraw
- GREEN = "#0F0"
- BLUE = "#00F"
- RED = "#F00"
- def crop_image(im, settings):
- """ Intelligently crop an image to the subject matter """
- scale_by = 1
- if is_landscape(im.width, im.height):
- scale_by = settings.crop_height / im.height
- elif is_portrait(im.width, im.height):
- scale_by = settings.crop_width / im.width
- elif is_square(im.width, im.height):
- if is_square(settings.crop_width, settings.crop_height):
- scale_by = settings.crop_width / im.width
- elif is_landscape(settings.crop_width, settings.crop_height):
- scale_by = settings.crop_width / im.width
- elif is_portrait(settings.crop_width, settings.crop_height):
- scale_by = settings.crop_height / im.height
- im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
- im_debug = im.copy()
- focus = focal_point(im_debug, settings)
- # take the focal point and turn it into crop coordinates that try to center over the focal
- # point but then get adjusted back into the frame
- y_half = int(settings.crop_height / 2)
- x_half = int(settings.crop_width / 2)
- x1 = focus.x - x_half
- if x1 < 0:
- x1 = 0
- elif x1 + settings.crop_width > im.width:
- x1 = im.width - settings.crop_width
- y1 = focus.y - y_half
- if y1 < 0:
- y1 = 0
- elif y1 + settings.crop_height > im.height:
- y1 = im.height - settings.crop_height
- x2 = x1 + settings.crop_width
- y2 = y1 + settings.crop_height
- crop = [x1, y1, x2, y2]
- results = []
- results.append(im.crop(tuple(crop)))
- if settings.annotate_image:
- d = ImageDraw.Draw(im_debug)
- rect = list(crop)
- rect[2] -= 1
- rect[3] -= 1
- d.rectangle(rect, outline=GREEN)
- results.append(im_debug)
- if settings.destop_view_image:
- im_debug.show()
- return results
- def focal_point(im, settings):
- corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
- entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else []
- face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else []
- pois = []
- weight_pref_total = 0
- if corner_points:
- weight_pref_total += settings.corner_points_weight
- if entropy_points:
- weight_pref_total += settings.entropy_points_weight
- if face_points:
- weight_pref_total += settings.face_points_weight
- corner_centroid = None
- if corner_points:
- corner_centroid = centroid(corner_points)
- corner_centroid.weight = settings.corner_points_weight / weight_pref_total
- pois.append(corner_centroid)
- entropy_centroid = None
- if entropy_points:
- entropy_centroid = centroid(entropy_points)
- entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
- pois.append(entropy_centroid)
- face_centroid = None
- if face_points:
- face_centroid = centroid(face_points)
- face_centroid.weight = settings.face_points_weight / weight_pref_total
- pois.append(face_centroid)
- average_point = poi_average(pois, settings)
- if settings.annotate_image:
- d = ImageDraw.Draw(im)
- max_size = min(im.width, im.height) * 0.07
- if corner_centroid is not None:
- color = BLUE
- box = corner_centroid.bounding(max_size * corner_centroid.weight)
- d.text((box[0], box[1]-15), f"Edge: {corner_centroid.weight:.02f}", fill=color)
- d.ellipse(box, outline=color)
- if len(corner_points) > 1:
- for f in corner_points:
- d.rectangle(f.bounding(4), outline=color)
- if entropy_centroid is not None:
- color = "#ff0"
- box = entropy_centroid.bounding(max_size * entropy_centroid.weight)
- d.text((box[0], box[1]-15), f"Entropy: {entropy_centroid.weight:.02f}", fill=color)
- d.ellipse(box, outline=color)
- if len(entropy_points) > 1:
- for f in entropy_points:
- d.rectangle(f.bounding(4), outline=color)
- if face_centroid is not None:
- color = RED
- box = face_centroid.bounding(max_size * face_centroid.weight)
- d.text((box[0], box[1]-15), f"Face: {face_centroid.weight:.02f}", fill=color)
- d.ellipse(box, outline=color)
- if len(face_points) > 1:
- for f in face_points:
- d.rectangle(f.bounding(4), outline=color)
- d.ellipse(average_point.bounding(max_size), outline=GREEN)
- return average_point
- def image_face_points(im, settings):
- if settings.dnn_model_path is not None:
- detector = cv2.FaceDetectorYN.create(
- settings.dnn_model_path,
- "",
- (im.width, im.height),
- 0.9, # score threshold
- 0.3, # nms threshold
- 5000 # keep top k before nms
- )
- faces = detector.detect(np.array(im))
- results = []
- if faces[1] is not None:
- for face in faces[1]:
- x = face[0]
- y = face[1]
- w = face[2]
- h = face[3]
- results.append(
- PointOfInterest(
- int(x + (w * 0.5)), # face focus left/right is center
- int(y + (h * 0.33)), # face focus up/down is close to the top of the head
- size = w,
- weight = 1/len(faces[1])
- )
- )
- return results
- else:
- np_im = np.array(im)
- gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
- tries = [
- [ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
- [ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
- [ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
- [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
- [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
- [ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
- [ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
- [ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
- ]
- for t in tries:
- classifier = cv2.CascadeClassifier(t[0])
- minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
- try:
- faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
- minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
- except Exception:
- continue
- if faces:
- rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
- return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
- return []
- def image_corner_points(im, settings):
- grayscale = im.convert("L")
- # naive attempt at preventing focal points from collecting at watermarks near the bottom
- gd = ImageDraw.Draw(grayscale)
- gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
- np_im = np.array(grayscale)
- points = cv2.goodFeaturesToTrack(
- np_im,
- maxCorners=100,
- qualityLevel=0.04,
- minDistance=min(grayscale.width, grayscale.height)*0.06,
- useHarrisDetector=False,
- )
- if points is None:
- return []
- focal_points = []
- for point in points:
- x, y = point.ravel()
- focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points)))
- return focal_points
- def image_entropy_points(im, settings):
- landscape = im.height < im.width
- portrait = im.height > im.width
- if landscape:
- move_idx = [0, 2]
- move_max = im.size[0]
- elif portrait:
- move_idx = [1, 3]
- move_max = im.size[1]
- else:
- return []
- e_max = 0
- crop_current = [0, 0, settings.crop_width, settings.crop_height]
- crop_best = crop_current
- while crop_current[move_idx[1]] < move_max:
- crop = im.crop(tuple(crop_current))
- e = image_entropy(crop)
- if (e > e_max):
- e_max = e
- crop_best = list(crop_current)
- crop_current[move_idx[0]] += 4
- crop_current[move_idx[1]] += 4
- x_mid = int(crop_best[0] + settings.crop_width/2)
- y_mid = int(crop_best[1] + settings.crop_height/2)
- return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]
- def image_entropy(im):
- # greyscale image entropy
- # band = np.asarray(im.convert("L"))
- band = np.asarray(im.convert("1"), dtype=np.uint8)
- hist, _ = np.histogram(band, bins=range(0, 256))
- hist = hist[hist > 0]
- return -np.log2(hist / hist.sum()).sum()
- def centroid(pois):
- x = [poi.x for poi in pois]
- y = [poi.y for poi in pois]
- return PointOfInterest(sum(x) / len(pois), sum(y) / len(pois))
- def poi_average(pois, settings):
- weight = 0.0
- x = 0.0
- y = 0.0
- for poi in pois:
- weight += poi.weight
- x += poi.x * poi.weight
- y += poi.y * poi.weight
- avg_x = round(weight and x / weight)
- avg_y = round(weight and y / weight)
- return PointOfInterest(avg_x, avg_y)
- def is_landscape(w, h):
- return w > h
- def is_portrait(w, h):
- return h > w
- def is_square(w, h):
- return w == h
- def download_and_cache_models(dirname):
- download_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
- model_file_name = 'face_detection_yunet.onnx'
- os.makedirs(dirname, exist_ok=True)
- cache_file = os.path.join(dirname, model_file_name)
- if not os.path.exists(cache_file):
- print(f"downloading face detection model from '{download_url}' to '{cache_file}'")
- response = requests.get(download_url)
- with open(cache_file, "wb") as f:
- f.write(response.content)
- if os.path.exists(cache_file):
- return cache_file
- return None
- class PointOfInterest:
- def __init__(self, x, y, weight=1.0, size=10):
- self.x = x
- self.y = y
- self.weight = weight
- self.size = size
- def bounding(self, size):
- return [
- self.x - size // 2,
- self.y - size // 2,
- self.x + size // 2,
- self.y + size // 2
- ]
- class Settings:
- def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5, annotate_image=False, dnn_model_path=None):
- self.crop_width = crop_width
- self.crop_height = crop_height
- self.corner_points_weight = corner_points_weight
- self.entropy_points_weight = entropy_points_weight
- self.face_points_weight = face_points_weight
- self.annotate_image = annotate_image
- self.destop_view_image = False
- self.dnn_model_path = dnn_model_path
|