123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891 |
- import datetime
- import json
- import os
- import re
- import sys
- import threading
- import time
- import logging
- import gradio as gr
- import torch
- import tqdm
- import launch
- import modules.interrogate
- import modules.memmon
- import modules.styles
- import modules.devices as devices
- from modules import localization, script_loading, errors, ui_components, shared_items, cmd_args
- from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # noqa: F401
- from ldm.models.diffusion.ddpm import LatentDiffusion
- from typing import Optional
- log = logging.getLogger(__name__)
- demo = None
- parser = cmd_args.parser
- script_loading.preload_extensions(extensions_dir, parser, extension_list=launch.list_extensions(launch.args.ui_settings_file))
- script_loading.preload_extensions(extensions_builtin_dir, parser)
- if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
- cmd_opts = parser.parse_args()
- else:
- cmd_opts, _ = parser.parse_known_args()
- restricted_opts = {
- "samples_filename_pattern",
- "directories_filename_pattern",
- "outdir_samples",
- "outdir_txt2img_samples",
- "outdir_img2img_samples",
- "outdir_extras_samples",
- "outdir_grids",
- "outdir_txt2img_grids",
- "outdir_save",
- "outdir_init_images"
- }
- # https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json
- gradio_hf_hub_themes = [
- "gradio/glass",
- "gradio/monochrome",
- "gradio/seafoam",
- "gradio/soft",
- "freddyaboulton/dracula_revamped",
- "gradio/dracula_test",
- "abidlabs/dracula_test",
- "abidlabs/pakistan",
- "dawood/microsoft_windows",
- "ysharma/steampunk"
- ]
- cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
- devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
- (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer'])
- devices.dtype = torch.float32 if cmd_opts.no_half else torch.float16
- devices.dtype_vae = torch.float32 if cmd_opts.no_half or cmd_opts.no_half_vae else torch.float16
- device = devices.device
- weight_load_location = None if cmd_opts.lowram else "cpu"
- batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram)
- parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
- xformers_available = False
- config_filename = cmd_opts.ui_settings_file
- os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True)
- hypernetworks = {}
- loaded_hypernetworks = []
- def reload_hypernetworks():
- from modules.hypernetworks import hypernetwork
- global hypernetworks
- hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
- class State:
- skipped = False
- interrupted = False
- job = ""
- job_no = 0
- job_count = 0
- processing_has_refined_job_count = False
- job_timestamp = '0'
- sampling_step = 0
- sampling_steps = 0
- current_latent = None
- current_image = None
- current_image_sampling_step = 0
- id_live_preview = 0
- textinfo = None
- time_start = None
- server_start = None
- _server_command_signal = threading.Event()
- _server_command: Optional[str] = None
- @property
- def need_restart(self) -> bool:
- # Compatibility getter for need_restart.
- return self.server_command == "restart"
- @need_restart.setter
- def need_restart(self, value: bool) -> None:
- # Compatibility setter for need_restart.
- if value:
- self.server_command = "restart"
- @property
- def server_command(self):
- return self._server_command
- @server_command.setter
- def server_command(self, value: Optional[str]) -> None:
- """
- Set the server command to `value` and signal that it's been set.
- """
- self._server_command = value
- self._server_command_signal.set()
- def wait_for_server_command(self, timeout: Optional[float] = None) -> Optional[str]:
- """
- Wait for server command to get set; return and clear the value and signal.
- """
- if self._server_command_signal.wait(timeout):
- self._server_command_signal.clear()
- req = self._server_command
- self._server_command = None
- return req
- return None
- def request_restart(self) -> None:
- self.interrupt()
- self.server_command = "restart"
- log.info("Received restart request")
- def skip(self):
- self.skipped = True
- log.info("Received skip request")
- def interrupt(self):
- self.interrupted = True
- log.info("Received interrupt request")
- def nextjob(self):
- if opts.live_previews_enable and opts.show_progress_every_n_steps == -1:
- self.do_set_current_image()
- self.job_no += 1
- self.sampling_step = 0
- self.current_image_sampling_step = 0
- def dict(self):
- obj = {
- "skipped": self.skipped,
- "interrupted": self.interrupted,
- "job": self.job,
- "job_count": self.job_count,
- "job_timestamp": self.job_timestamp,
- "job_no": self.job_no,
- "sampling_step": self.sampling_step,
- "sampling_steps": self.sampling_steps,
- }
- return obj
- def begin(self, job: str = "(unknown)"):
- self.sampling_step = 0
- self.job_count = -1
- self.processing_has_refined_job_count = False
- self.job_no = 0
- self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
- self.current_latent = None
- self.current_image = None
- self.current_image_sampling_step = 0
- self.id_live_preview = 0
- self.skipped = False
- self.interrupted = False
- self.textinfo = None
- self.time_start = time.time()
- self.job = job
- devices.torch_gc()
- log.info("Starting job %s", job)
- def end(self):
- duration = time.time() - self.time_start
- log.info("Ending job %s (%.2f seconds)", self.job, duration)
- self.job = ""
- self.job_count = 0
- devices.torch_gc()
- def set_current_image(self):
- """sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this"""
- if not parallel_processing_allowed:
- return
- if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.live_previews_enable and opts.show_progress_every_n_steps != -1:
- self.do_set_current_image()
- def do_set_current_image(self):
- if self.current_latent is None:
- return
- import modules.sd_samplers
- if opts.show_progress_grid:
- self.assign_current_image(modules.sd_samplers.samples_to_image_grid(self.current_latent))
- else:
- self.assign_current_image(modules.sd_samplers.sample_to_image(self.current_latent))
- self.current_image_sampling_step = self.sampling_step
- def assign_current_image(self, image):
- self.current_image = image
- self.id_live_preview += 1
- state = State()
- state.server_start = time.time()
- styles_filename = cmd_opts.styles_file
- prompt_styles = modules.styles.StyleDatabase(styles_filename)
- interrogator = modules.interrogate.InterrogateModels("interrogate")
- face_restorers = []
- class OptionInfo:
- def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None, comment_before='', comment_after=''):
- self.default = default
- self.label = label
- self.component = component
- self.component_args = component_args
- self.onchange = onchange
- self.section = section
- self.refresh = refresh
- self.comment_before = comment_before
- """HTML text that will be added after label in UI"""
- self.comment_after = comment_after
- """HTML text that will be added before label in UI"""
- def link(self, label, url):
- self.comment_before += f"[<a href='{url}' target='_blank'>{label}</a>]"
- return self
- def js(self, label, js_func):
- self.comment_before += f"[<a onclick='{js_func}(); return false'>{label}</a>]"
- return self
- def info(self, info):
- self.comment_after += f"<span class='info'>({info})</span>"
- return self
- def html(self, html):
- self.comment_after += html
- return self
- def needs_restart(self):
- self.comment_after += " <span class='info'>(requires restart)</span>"
- return self
- def options_section(section_identifier, options_dict):
- for v in options_dict.values():
- v.section = section_identifier
- return options_dict
- def list_checkpoint_tiles():
- import modules.sd_models
- return modules.sd_models.checkpoint_tiles()
- def refresh_checkpoints():
- import modules.sd_models
- return modules.sd_models.list_models()
- def list_samplers():
- import modules.sd_samplers
- return modules.sd_samplers.all_samplers
- hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config}
- tab_names = []
- options_templates = {}
- options_templates.update(options_section(('saving-images', "Saving images/grids"), {
- "samples_save": OptionInfo(True, "Always save all generated images"),
- "samples_format": OptionInfo('png', 'File format for images'),
- "samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
- "save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs),
- "grid_save": OptionInfo(True, "Always save all generated image grids"),
- "grid_format": OptionInfo('png', 'File format for grids'),
- "grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"),
- "grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"),
- "grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"),
- "grid_zip_filename_pattern": OptionInfo("", "Archive filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
- "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}),
- "font": OptionInfo("", "Font for image grids that have text"),
- "grid_text_active_color": OptionInfo("#000000", "Text color for image grids", ui_components.FormColorPicker, {}),
- "grid_text_inactive_color": OptionInfo("#999999", "Inactive text color for image grids", ui_components.FormColorPicker, {}),
- "grid_background_color": OptionInfo("#ffffff", "Background color for image grids", ui_components.FormColorPicker, {}),
- "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
- "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
- "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
- "save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."),
- "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
- "save_mask": OptionInfo(False, "For inpainting, save a copy of the greyscale mask"),
- "save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"),
- "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
- "webp_lossless": OptionInfo(False, "Use lossless compression for webp images"),
- "export_for_4chan": OptionInfo(True, "Save copy of large images as JPG").info("if the file size is above the limit, or either width or height are above the limit"),
- "img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number),
- "target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number),
- "img_max_size_mp": OptionInfo(200, "Maximum image size", gr.Number).info("in megapixels"),
- "use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
- "use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
- "save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
- "save_init_img": OptionInfo(False, "Save init images when using img2img"),
- "temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"),
- "clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"),
- }))
- options_templates.update(options_section(('saving-paths', "Paths for saving"), {
- "outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs),
- "outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output directory for txt2img images', component_args=hide_dirs),
- "outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output directory for img2img images', component_args=hide_dirs),
- "outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output directory for images from extras tab', component_args=hide_dirs),
- "outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs),
- "outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs),
- "outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs),
- "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs),
- "outdir_init_images": OptionInfo("outputs/init-images", "Directory for saving init images when using img2img", component_args=hide_dirs),
- }))
- options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
- "save_to_dirs": OptionInfo(True, "Save images to a subdirectory"),
- "grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"),
- "use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
- "directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"),
- "directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}),
- }))
- options_templates.update(options_section(('upscaling', "Upscaling"), {
- "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"),
- "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"),
- "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
- "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
- }))
- options_templates.update(options_section(('face-restoration', "Face restoration"), {
- "face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}),
- "code_former_weight": OptionInfo(0.5, "CodeFormer weight", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}).info("0 = maximum effect; 1 = minimum effect"),
- "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"),
- }))
- options_templates.update(options_section(('system', "System"), {
- "show_warnings": OptionInfo(False, "Show warnings in console."),
- "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"),
- "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
- "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
- "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."),
- "list_hidden_files": OptionInfo(True, "Load models/files in hidden directories").info("directory is hidden if its name starts with \".\""),
- "disable_mmap_load_safetensors": OptionInfo(False, "Disable memmapping for loading .safetensors files.").info("fixes very slow loading speed in some cases"),
- }))
- options_templates.update(options_section(('training', "Training"), {
- "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
- "pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."),
- "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."),
- "save_training_settings_to_txt": OptionInfo(True, "Save textual inversion and hypernet settings to a text file whenever training starts."),
- "dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
- "dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
- "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
- "training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"),
- "training_xattention_optimizations": OptionInfo(False, "Use cross attention optimizations while training"),
- "training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."),
- "training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."),
- "training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."),
- }))
- options_templates.update(options_section(('sd', "Stable Diffusion"), {
- "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
- "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
- "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
- "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"),
- "sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
- "sd_unet": OptionInfo("Automatic", "SD Unet", gr.Dropdown, lambda: {"choices": shared_items.sd_unet_items()}, refresh=shared_items.refresh_unet_list).info("choose Unet model: Automatic = use one with same filename as checkpoint; None = use Unet from checkpoint"),
- "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
- "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
- "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"),
- "img2img_background_color": OptionInfo("#ffffff", "With img2img, fill image's transparent parts with this color.", ui_components.FormColorPicker, {}),
- "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds. Requires restart to apply."),
- "enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"),
- "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
- "comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"),
- "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
- "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
- "auto_vae_precision": OptionInfo(True, "Automaticlly revert VAE to 32-bit floats").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image"),
- "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors"),
- }))
- options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {
- "sdxl_crop_top": OptionInfo(0, "crop top coordinate"),
- "sdxl_crop_left": OptionInfo(0, "crop left coordinate"),
- "sdxl_refiner_low_aesthetic_score": OptionInfo(2.5, "SDXL low aesthetic score", gr.Number).info("used for refiner model negative prompt"),
- "sdxl_refiner_high_aesthetic_score": OptionInfo(6.0, "SDXL high aesthetic score", gr.Number).info("used for refiner model prompt"),
- }))
- options_templates.update(options_section(('optimizations', "Optimizations"), {
- "cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}),
- "s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"),
- "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"),
- "token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
- "token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"),
- "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length").info("improves performance when prompt and negative prompt have different lengths; changes seeds"),
- "experimental_persistent_cond_cache": OptionInfo(False, "persistent cond cache").info("Experimental, keep cond caches across jobs, reduce overhead."),
- }))
- options_templates.update(options_section(('compatibility', "Compatibility"), {
- "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
- "use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."),
- "no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."),
- "use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."),
- "dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."),
- "hires_fix_use_firstpass_conds": OptionInfo(False, "For hires fix, calculate conds of second pass using extra networks of first pass."),
- }))
- options_templates.update(options_section(('interrogate', "Interrogate Options"), {
- "interrogate_keep_models_in_memory": OptionInfo(False, "Keep models in VRAM"),
- "interrogate_return_ranks": OptionInfo(False, "Include ranks of model tags matches in results.").info("booru only"),
- "interrogate_clip_num_beams": OptionInfo(1, "BLIP: num_beams", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
- "interrogate_clip_min_length": OptionInfo(24, "BLIP: minimum description length", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
- "interrogate_clip_max_length": OptionInfo(48, "BLIP: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
- "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file").info("0 = No limit"),
- "interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types),
- "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "deepbooru: score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
- "deepbooru_sort_alpha": OptionInfo(True, "deepbooru: sort tags alphabetically").info("if not: sort by score"),
- "deepbooru_use_spaces": OptionInfo(True, "deepbooru: use spaces in tags").info("if not: use underscores"),
- "deepbooru_escape": OptionInfo(True, "deepbooru: escape (\\) brackets").info("so they are used as literal brackets and not for emphasis"),
- "deepbooru_filter_tags": OptionInfo("", "deepbooru: filter out those tags").info("separate by comma"),
- }))
- options_templates.update(options_section(('extra_networks', "Extra Networks"), {
- "extra_networks_show_hidden_directories": OptionInfo(True, "Show hidden directories").info("directory is hidden if its name starts with \".\"."),
- "extra_networks_hidden_models": OptionInfo("When searched", "Show cards for models in hidden directories", gr.Radio, {"choices": ["Always", "When searched", "Never"]}).info('"When searched" option will only show the item when the search string has 4 characters or more'),
- "extra_networks_default_multiplier": OptionInfo(1.0, "Default multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}),
- "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks").info("in pixels"),
- "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks").info("in pixels"),
- "extra_networks_card_text_scale": OptionInfo(1.0, "Card text scale", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}).info("1 = original size"),
- "extra_networks_card_show_desc": OptionInfo(True, "Show description on card"),
- "extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"),
- "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_restart(),
- "textual_inversion_print_at_load": OptionInfo(False, "Print a list of Textual Inversion embeddings when loading model"),
- "textual_inversion_add_hashes_to_infotext": OptionInfo(True, "Add Textual Inversion hashes to infotext"),
- "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *hypernetworks]}, refresh=reload_hypernetworks),
- }))
- options_templates.update(options_section(('ui', "User interface"), {
- "localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_restart(),
- "gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes}).needs_restart(),
- "img2img_editor_height": OptionInfo(720, "img2img: height of image editor", gr.Slider, {"minimum": 80, "maximum": 1600, "step": 1}).info("in pixels").needs_restart(),
- "return_grid": OptionInfo(True, "Show grid in results for web"),
- "return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"),
- "return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"),
- "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
- "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
- "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
- "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
- "js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
- "js_modal_lightbox_gamepad": OptionInfo(False, "Navigate image viewer with gamepad"),
- "js_modal_lightbox_gamepad_repeat": OptionInfo(250, "Gamepad repeat period, in milliseconds"),
- "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
- "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group").needs_restart(),
- "dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row").needs_restart(),
- "keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
- "keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
- "keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"),
- "keyedit_move": OptionInfo(True, "Alt+left/right moves prompt elements"),
- "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_restart(),
- "ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_restart(),
- "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_restart(),
- "ui_reorder_list": OptionInfo([], "txt2img/img2img UI item order", ui_components.DropdownMulti, lambda: {"choices": list(shared_items.ui_reorder_categories())}).info("selected items appear first").needs_restart(),
- "hires_fix_show_sampler": OptionInfo(False, "Hires fix: show hires sampler selection").needs_restart(),
- "hires_fix_show_prompts": OptionInfo(False, "Hires fix: show hires prompt and negative prompt").needs_restart(),
- "disable_token_counters": OptionInfo(False, "Disable prompt token counters").needs_restart(),
- }))
- options_templates.update(options_section(('infotext', "Infotext"), {
- "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
- "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
- "add_user_name_to_info": OptionInfo(False, "Add user name to generation information when authenticated"),
- "add_version_to_infotext": OptionInfo(True, "Add program version to generation information"),
- "disable_weights_auto_swap": OptionInfo(True, "Disregard checkpoint information from pasted infotext").info("when reading generation parameters from text into UI"),
- "infotext_styles": OptionInfo("Apply if any", "Infer styles from prompts of pasted infotext", gr.Radio, {"choices": ["Ignore", "Apply", "Discard", "Apply if any"]}).info("when reading generation parameters from text into UI)").html("""<ul style='margin-left: 1.5em'>
- <li>Ignore: keep prompt and styles dropdown as it is.</li>
- <li>Apply: remove style text from prompt, always replace styles dropdown value with found styles (even if none are found).</li>
- <li>Discard: remove style text from prompt, keep styles dropdown as it is.</li>
- <li>Apply if any: remove style text from prompt; if any styles are found in prompt, put them into styles dropdown, otherwise keep it as it is.</li>
- </ul>"""),
- }))
- options_templates.update(options_section(('ui', "Live previews"), {
- "show_progressbar": OptionInfo(True, "Show progressbar"),
- "live_previews_enable": OptionInfo(True, "Show live previews of the created image"),
- "live_previews_image_format": OptionInfo("png", "Live preview file format", gr.Radio, {"choices": ["jpeg", "png", "webp"]}),
- "show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"),
- "show_progress_every_n_steps": OptionInfo(10, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}).info("in sampling steps - show new live preview image every N sampling steps; -1 = only show after completion of batch"),
- "show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap", "TAESD"]}).info("Full = slow but pretty; Approx NN and TAESD = fast but low quality; Approx cheap = super fast but terrible otherwise"),
- "live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}),
- "live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"),
- }))
- options_templates.update(options_section(('sampler-params', "Sampler parameters"), {
- "hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}).needs_restart(),
- "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; higher = more unperdictable results"),
- "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; applies to Euler a and other samplers that have a in them"),
- "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}),
- 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
- 'k_sched_type': OptionInfo("Automatic", "scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}).info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"),
- 'sigma_min': OptionInfo(0.0, "sigma min", gr.Number).info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"),
- 'sigma_max': OptionInfo(0.0, "sigma max", gr.Number).info("0 = default (~14.6); maximum noise strength for k-diffusion noise schedule"),
- 'rho': OptionInfo(0.0, "rho", gr.Number).info("0 = default (7 for karras, 1 for polyexponential); higher values result in a more steep noise schedule (decreases faster)"),
- 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"),
- 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"),
- 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}),
- 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}),
- 'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}).info("must be < sampling steps"),
- 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"),
- }))
- options_templates.update(options_section(('postprocessing', "Postprocessing"), {
- 'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
- 'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
- 'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
- }))
- options_templates.update(options_section((None, "Hidden options"), {
- "disabled_extensions": OptionInfo([], "Disable these extensions"),
- "disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "extra", "all"]}),
- "restore_config_state_file": OptionInfo("", "Config state file to restore from, under 'config-states/' folder"),
- "sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
- }))
- options_templates.update()
- class Options:
- data = None
- data_labels = options_templates
- typemap = {int: float}
- def __init__(self):
- self.data = {k: v.default for k, v in self.data_labels.items()}
- def __setattr__(self, key, value):
- if self.data is not None:
- if key in self.data or key in self.data_labels:
- assert not cmd_opts.freeze_settings, "changing settings is disabled"
- info = opts.data_labels.get(key, None)
- comp_args = info.component_args if info else None
- if isinstance(comp_args, dict) and comp_args.get('visible', True) is False:
- raise RuntimeError(f"not possible to set {key} because it is restricted")
- if cmd_opts.hide_ui_dir_config and key in restricted_opts:
- raise RuntimeError(f"not possible to set {key} because it is restricted")
- self.data[key] = value
- return
- return super(Options, self).__setattr__(key, value)
- def __getattr__(self, item):
- if self.data is not None:
- if item in self.data:
- return self.data[item]
- if item in self.data_labels:
- return self.data_labels[item].default
- return super(Options, self).__getattribute__(item)
- def set(self, key, value):
- """sets an option and calls its onchange callback, returning True if the option changed and False otherwise"""
- oldval = self.data.get(key, None)
- if oldval == value:
- return False
- try:
- setattr(self, key, value)
- except RuntimeError:
- return False
- if self.data_labels[key].onchange is not None:
- try:
- self.data_labels[key].onchange()
- except Exception as e:
- errors.display(e, f"changing setting {key} to {value}")
- setattr(self, key, oldval)
- return False
- return True
- def get_default(self, key):
- """returns the default value for the key"""
- data_label = self.data_labels.get(key)
- if data_label is None:
- return None
- return data_label.default
- def save(self, filename):
- assert not cmd_opts.freeze_settings, "saving settings is disabled"
- with open(filename, "w", encoding="utf8") as file:
- json.dump(self.data, file, indent=4)
- def same_type(self, x, y):
- if x is None or y is None:
- return True
- type_x = self.typemap.get(type(x), type(x))
- type_y = self.typemap.get(type(y), type(y))
- return type_x == type_y
- def load(self, filename):
- with open(filename, "r", encoding="utf8") as file:
- self.data = json.load(file)
- # 1.1.1 quicksettings list migration
- if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None:
- self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')]
- # 1.4.0 ui_reorder
- if isinstance(self.data.get('ui_reorder'), str) and self.data.get('ui_reorder') and "ui_reorder_list" not in self.data:
- self.data['ui_reorder_list'] = [i.strip() for i in self.data.get('ui_reorder').split(',')]
- bad_settings = 0
- for k, v in self.data.items():
- info = self.data_labels.get(k, None)
- if info is not None and not self.same_type(info.default, v):
- print(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr)
- bad_settings += 1
- if bad_settings > 0:
- print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr)
- def onchange(self, key, func, call=True):
- item = self.data_labels.get(key)
- item.onchange = func
- if call:
- func()
- def dumpjson(self):
- d = {k: self.data.get(k, v.default) for k, v in self.data_labels.items()}
- d["_comments_before"] = {k: v.comment_before for k, v in self.data_labels.items() if v.comment_before is not None}
- d["_comments_after"] = {k: v.comment_after for k, v in self.data_labels.items() if v.comment_after is not None}
- return json.dumps(d)
- def add_option(self, key, info):
- self.data_labels[key] = info
- def reorder(self):
- """reorder settings so that all items related to section always go together"""
- section_ids = {}
- settings_items = self.data_labels.items()
- for _, item in settings_items:
- if item.section not in section_ids:
- section_ids[item.section] = len(section_ids)
- self.data_labels = dict(sorted(settings_items, key=lambda x: section_ids[x[1].section]))
- def cast_value(self, key, value):
- """casts an arbitrary to the same type as this setting's value with key
- Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str)
- """
- if value is None:
- return None
- default_value = self.data_labels[key].default
- if default_value is None:
- default_value = getattr(self, key, None)
- if default_value is None:
- return None
- expected_type = type(default_value)
- if expected_type == bool and value == "False":
- value = False
- else:
- value = expected_type(value)
- return value
- opts = Options()
- if os.path.exists(config_filename):
- opts.load(config_filename)
- class Shared(sys.modules[__name__].__class__):
- """
- this class is here to provide sd_model field as a property, so that it can be created and loaded on demand rather than
- at program startup.
- """
- sd_model_val = None
- @property
- def sd_model(self):
- import modules.sd_models
- return modules.sd_models.model_data.get_sd_model()
- @sd_model.setter
- def sd_model(self, value):
- import modules.sd_models
- modules.sd_models.model_data.set_sd_model(value)
- sd_model: LatentDiffusion = None # this var is here just for IDE's type checking; it cannot be accessed because the class field above will be accessed instead
- sys.modules[__name__].__class__ = Shared
- settings_components = None
- """assinged from ui.py, a mapping on setting names to gradio components repsponsible for those settings"""
- latent_upscale_default_mode = "Latent"
- latent_upscale_modes = {
- "Latent": {"mode": "bilinear", "antialias": False},
- "Latent (antialiased)": {"mode": "bilinear", "antialias": True},
- "Latent (bicubic)": {"mode": "bicubic", "antialias": False},
- "Latent (bicubic antialiased)": {"mode": "bicubic", "antialias": True},
- "Latent (nearest)": {"mode": "nearest", "antialias": False},
- "Latent (nearest-exact)": {"mode": "nearest-exact", "antialias": False},
- }
- sd_upscalers = []
- clip_model = None
- progress_print_out = sys.stdout
- gradio_theme = gr.themes.Base()
- def reload_gradio_theme(theme_name=None):
- global gradio_theme
- if not theme_name:
- theme_name = opts.gradio_theme
- default_theme_args = dict(
- font=["Source Sans Pro", 'ui-sans-serif', 'system-ui', 'sans-serif'],
- font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'],
- )
- if theme_name == "Default":
- gradio_theme = gr.themes.Default(**default_theme_args)
- else:
- try:
- gradio_theme = gr.themes.ThemeClass.from_hub(theme_name)
- except Exception as e:
- errors.display(e, "changing gradio theme")
- gradio_theme = gr.themes.Default(**default_theme_args)
- class TotalTQDM:
- def __init__(self):
- self._tqdm = None
- def reset(self):
- self._tqdm = tqdm.tqdm(
- desc="Total progress",
- total=state.job_count * state.sampling_steps,
- position=1,
- file=progress_print_out
- )
- def update(self):
- if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
- return
- if self._tqdm is None:
- self.reset()
- self._tqdm.update()
- def updateTotal(self, new_total):
- if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars:
- return
- if self._tqdm is None:
- self.reset()
- self._tqdm.total = new_total
- def clear(self):
- if self._tqdm is not None:
- self._tqdm.refresh()
- self._tqdm.close()
- self._tqdm = None
- total_tqdm = TotalTQDM()
- mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts)
- mem_mon.start()
- def natural_sort_key(s, regex=re.compile('([0-9]+)')):
- return [int(text) if text.isdigit() else text.lower() for text in regex.split(s)]
- def listfiles(dirname):
- filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=natural_sort_key) if not x.startswith(".")]
- return [file for file in filenames if os.path.isfile(file)]
- def html_path(filename):
- return os.path.join(script_path, "html", filename)
- def html(filename):
- path = html_path(filename)
- if os.path.exists(path):
- with open(path, encoding="utf8") as file:
- return file.read()
- return ""
- def walk_files(path, allowed_extensions=None):
- if not os.path.exists(path):
- return
- if allowed_extensions is not None:
- allowed_extensions = set(allowed_extensions)
- items = list(os.walk(path, followlinks=True))
- items = sorted(items, key=lambda x: natural_sort_key(x[0]))
- for root, _, files in items:
- for filename in sorted(files, key=natural_sort_key):
- if allowed_extensions is not None:
- _, ext = os.path.splitext(filename)
- if ext not in allowed_extensions:
- continue
- if not opts.list_hidden_files and ("/." in root or "\\." in root):
- continue
- yield os.path.join(root, filename)
|