123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476 |
- from collections import deque
- import torch
- import inspect
- import k_diffusion.sampling
- from modules import prompt_parser, devices, sd_samplers_common
- from modules.shared import opts, state
- import modules.shared as shared
- from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
- from modules.script_callbacks import CFGDenoisedParams, cfg_denoised_callback
- from modules.script_callbacks import AfterCFGCallbackParams, cfg_after_cfg_callback
- samplers_k_diffusion = [
- ('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {"uses_ensd": True}),
- ('Euler', 'sample_euler', ['k_euler'], {}),
- ('LMS', 'sample_lms', ['k_lms'], {}),
- ('Heun', 'sample_heun', ['k_heun'], {"second_order": True}),
- ('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
- ('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True, "uses_ensd": True}),
- ('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {"uses_ensd": True, "second_order": True}),
- ('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
- ('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {"second_order": True, "brownian_noise": True}),
- ('DPM++ 2M SDE', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {"brownian_noise": True}),
- ('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {"uses_ensd": True}),
- ('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {"uses_ensd": True}),
- ('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
- ('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
- ('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True, "uses_ensd": True, "second_order": True}),
- ('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras', "uses_ensd": True, "second_order": True}),
- ('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
- ('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
- ('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
- ]
- samplers_data_k_diffusion = [
- sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
- for label, funcname, aliases, options in samplers_k_diffusion
- if hasattr(k_diffusion.sampling, funcname)
- ]
- sampler_extra_params = {
- 'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
- 'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
- 'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
- }
- k_diffusion_samplers_map = {x.name: x for x in samplers_data_k_diffusion}
- k_diffusion_scheduler = {
- 'Automatic': None,
- 'karras': k_diffusion.sampling.get_sigmas_karras,
- 'exponential': k_diffusion.sampling.get_sigmas_exponential,
- 'polyexponential': k_diffusion.sampling.get_sigmas_polyexponential
- }
- def catenate_conds(conds):
- if not isinstance(conds[0], dict):
- return torch.cat(conds)
- return {key: torch.cat([x[key] for x in conds]) for key in conds[0].keys()}
- def subscript_cond(cond, a, b):
- if not isinstance(cond, dict):
- return cond[a:b]
- return {key: vec[a:b] for key, vec in cond.items()}
- def pad_cond(tensor, repeats, empty):
- if not isinstance(tensor, dict):
- return torch.cat([tensor, empty.repeat((tensor.shape[0], repeats, 1))], axis=1)
- tensor['crossattn'] = pad_cond(tensor['crossattn'], repeats, empty)
- return tensor
- class CFGDenoiser(torch.nn.Module):
- """
- Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet)
- that can take a noisy picture and produce a noise-free picture using two guidances (prompts)
- instead of one. Originally, the second prompt is just an empty string, but we use non-empty
- negative prompt.
- """
- def __init__(self, model):
- super().__init__()
- self.inner_model = model
- self.mask = None
- self.nmask = None
- self.init_latent = None
- self.step = 0
- self.image_cfg_scale = None
- self.padded_cond_uncond = False
- def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
- denoised_uncond = x_out[-uncond.shape[0]:]
- denoised = torch.clone(denoised_uncond)
- for i, conds in enumerate(conds_list):
- for cond_index, weight in conds:
- denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
- return denoised
- def combine_denoised_for_edit_model(self, x_out, cond_scale):
- out_cond, out_img_cond, out_uncond = x_out.chunk(3)
- denoised = out_uncond + cond_scale * (out_cond - out_img_cond) + self.image_cfg_scale * (out_img_cond - out_uncond)
- return denoised
- def forward(self, x, sigma, uncond, cond, cond_scale, s_min_uncond, image_cond):
- if state.interrupted or state.skipped:
- raise sd_samplers_common.InterruptedException
- # at self.image_cfg_scale == 1.0 produced results for edit model are the same as with normal sampling,
- # so is_edit_model is set to False to support AND composition.
- is_edit_model = shared.sd_model.cond_stage_key == "edit" and self.image_cfg_scale is not None and self.image_cfg_scale != 1.0
- conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
- uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
- assert not is_edit_model or all(len(conds) == 1 for conds in conds_list), "AND is not supported for InstructPix2Pix checkpoint (unless using Image CFG scale = 1.0)"
- batch_size = len(conds_list)
- repeats = [len(conds_list[i]) for i in range(batch_size)]
- if shared.sd_model.model.conditioning_key == "crossattn-adm":
- image_uncond = torch.zeros_like(image_cond)
- make_condition_dict = lambda c_crossattn, c_adm: {"c_crossattn": [c_crossattn], "c_adm": c_adm}
- else:
- image_uncond = image_cond
- if isinstance(uncond, dict):
- make_condition_dict = lambda c_crossattn, c_concat: {**c_crossattn, "c_concat": [c_concat]}
- else:
- make_condition_dict = lambda c_crossattn, c_concat: {"c_crossattn": [c_crossattn], "c_concat": [c_concat]}
- if not is_edit_model:
- x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
- sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
- image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond])
- else:
- x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
- sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
- image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_uncond] + [torch.zeros_like(self.init_latent)])
- denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps, tensor, uncond)
- cfg_denoiser_callback(denoiser_params)
- x_in = denoiser_params.x
- image_cond_in = denoiser_params.image_cond
- sigma_in = denoiser_params.sigma
- tensor = denoiser_params.text_cond
- uncond = denoiser_params.text_uncond
- skip_uncond = False
- # alternating uncond allows for higher thresholds without the quality loss normally expected from raising it
- if self.step % 2 and s_min_uncond > 0 and sigma[0] < s_min_uncond and not is_edit_model:
- skip_uncond = True
- x_in = x_in[:-batch_size]
- sigma_in = sigma_in[:-batch_size]
- self.padded_cond_uncond = False
- if shared.opts.pad_cond_uncond and tensor.shape[1] != uncond.shape[1]:
- empty = shared.sd_model.cond_stage_model_empty_prompt
- num_repeats = (tensor.shape[1] - uncond.shape[1]) // empty.shape[1]
- if num_repeats < 0:
- tensor = pad_cond(tensor, -num_repeats, empty)
- self.padded_cond_uncond = True
- elif num_repeats > 0:
- uncond = pad_cond(uncond, num_repeats, empty)
- self.padded_cond_uncond = True
- if tensor.shape[1] == uncond.shape[1] or skip_uncond:
- if is_edit_model:
- cond_in = catenate_conds([tensor, uncond, uncond])
- elif skip_uncond:
- cond_in = tensor
- else:
- cond_in = catenate_conds([tensor, uncond])
- if shared.batch_cond_uncond:
- x_out = self.inner_model(x_in, sigma_in, cond=make_condition_dict(cond_in, image_cond_in))
- else:
- x_out = torch.zeros_like(x_in)
- for batch_offset in range(0, x_out.shape[0], batch_size):
- a = batch_offset
- b = a + batch_size
- x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(subscript_cond(cond_in, a, b), image_cond_in[a:b]))
- else:
- x_out = torch.zeros_like(x_in)
- batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
- for batch_offset in range(0, tensor.shape[0], batch_size):
- a = batch_offset
- b = min(a + batch_size, tensor.shape[0])
- if not is_edit_model:
- c_crossattn = subscript_cond(tensor, a, b)
- else:
- c_crossattn = torch.cat([tensor[a:b]], uncond)
- x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond=make_condition_dict(c_crossattn, image_cond_in[a:b]))
- if not skip_uncond:
- x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond=make_condition_dict(uncond, image_cond_in[-uncond.shape[0]:]))
- denoised_image_indexes = [x[0][0] for x in conds_list]
- if skip_uncond:
- fake_uncond = torch.cat([x_out[i:i+1] for i in denoised_image_indexes])
- x_out = torch.cat([x_out, fake_uncond]) # we skipped uncond denoising, so we put cond-denoised image to where the uncond-denoised image should be
- denoised_params = CFGDenoisedParams(x_out, state.sampling_step, state.sampling_steps, self.inner_model)
- cfg_denoised_callback(denoised_params)
- devices.test_for_nans(x_out, "unet")
- if opts.live_preview_content == "Prompt":
- sd_samplers_common.store_latent(torch.cat([x_out[i:i+1] for i in denoised_image_indexes]))
- elif opts.live_preview_content == "Negative prompt":
- sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
- if is_edit_model:
- denoised = self.combine_denoised_for_edit_model(x_out, cond_scale)
- elif skip_uncond:
- denoised = self.combine_denoised(x_out, conds_list, uncond, 1.0)
- else:
- denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
- if self.mask is not None:
- denoised = self.init_latent * self.mask + self.nmask * denoised
- after_cfg_callback_params = AfterCFGCallbackParams(denoised, state.sampling_step, state.sampling_steps)
- cfg_after_cfg_callback(after_cfg_callback_params)
- denoised = after_cfg_callback_params.x
- self.step += 1
- return denoised
- class TorchHijack:
- def __init__(self, sampler_noises):
- # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
- # implementation.
- self.sampler_noises = deque(sampler_noises)
- def __getattr__(self, item):
- if item == 'randn_like':
- return self.randn_like
- if hasattr(torch, item):
- return getattr(torch, item)
- raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
- def randn_like(self, x):
- if self.sampler_noises:
- noise = self.sampler_noises.popleft()
- if noise.shape == x.shape:
- return noise
- if opts.randn_source == "CPU" or x.device.type == 'mps':
- return torch.randn_like(x, device=devices.cpu).to(x.device)
- else:
- return torch.randn_like(x)
- class KDiffusionSampler:
- def __init__(self, funcname, sd_model):
- denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
- self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
- self.funcname = funcname
- self.func = getattr(k_diffusion.sampling, self.funcname)
- self.extra_params = sampler_extra_params.get(funcname, [])
- self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
- self.sampler_noises = None
- self.stop_at = None
- self.eta = None
- self.config = None # set by the function calling the constructor
- self.last_latent = None
- self.s_min_uncond = None
- self.conditioning_key = sd_model.model.conditioning_key
- def callback_state(self, d):
- step = d['i']
- latent = d["denoised"]
- if opts.live_preview_content == "Combined":
- sd_samplers_common.store_latent(latent)
- self.last_latent = latent
- if self.stop_at is not None and step > self.stop_at:
- raise sd_samplers_common.InterruptedException
- state.sampling_step = step
- shared.total_tqdm.update()
- def launch_sampling(self, steps, func):
- state.sampling_steps = steps
- state.sampling_step = 0
- try:
- return func()
- except RecursionError:
- print(
- 'Encountered RecursionError during sampling, returning last latent. '
- 'rho >5 with a polyexponential scheduler may cause this error. '
- 'You should try to use a smaller rho value instead.'
- )
- return self.last_latent
- except sd_samplers_common.InterruptedException:
- return self.last_latent
- def number_of_needed_noises(self, p):
- return p.steps
- def initialize(self, p):
- self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
- self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
- self.model_wrap_cfg.step = 0
- self.model_wrap_cfg.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
- self.eta = p.eta if p.eta is not None else opts.eta_ancestral
- self.s_min_uncond = getattr(p, 's_min_uncond', 0.0)
- k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
- extra_params_kwargs = {}
- for param_name in self.extra_params:
- if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
- extra_params_kwargs[param_name] = getattr(p, param_name)
- if 'eta' in inspect.signature(self.func).parameters:
- if self.eta != 1.0:
- p.extra_generation_params["Eta"] = self.eta
- extra_params_kwargs['eta'] = self.eta
- return extra_params_kwargs
- def get_sigmas(self, p, steps):
- discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
- if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
- discard_next_to_last_sigma = True
- p.extra_generation_params["Discard penultimate sigma"] = True
- steps += 1 if discard_next_to_last_sigma else 0
- if p.sampler_noise_scheduler_override:
- sigmas = p.sampler_noise_scheduler_override(steps)
- elif opts.k_sched_type != "Automatic":
- m_sigma_min, m_sigma_max = (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
- sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (m_sigma_min, m_sigma_max)
- sigmas_kwargs = {
- 'sigma_min': sigma_min,
- 'sigma_max': sigma_max,
- }
- sigmas_func = k_diffusion_scheduler[opts.k_sched_type]
- p.extra_generation_params["Schedule type"] = opts.k_sched_type
- if opts.sigma_min != m_sigma_min and opts.sigma_min != 0:
- sigmas_kwargs['sigma_min'] = opts.sigma_min
- p.extra_generation_params["Schedule min sigma"] = opts.sigma_min
- if opts.sigma_max != m_sigma_max and opts.sigma_max != 0:
- sigmas_kwargs['sigma_max'] = opts.sigma_max
- p.extra_generation_params["Schedule max sigma"] = opts.sigma_max
- default_rho = 1. if opts.k_sched_type == "polyexponential" else 7.
- if opts.k_sched_type != 'exponential' and opts.rho != 0 and opts.rho != default_rho:
- sigmas_kwargs['rho'] = opts.rho
- p.extra_generation_params["Schedule rho"] = opts.rho
- sigmas = sigmas_func(n=steps, **sigmas_kwargs, device=shared.device)
- elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
- sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
- sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
- else:
- sigmas = self.model_wrap.get_sigmas(steps)
- if discard_next_to_last_sigma:
- sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
- return sigmas
- def create_noise_sampler(self, x, sigmas, p):
- """For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
- if shared.opts.no_dpmpp_sde_batch_determinism:
- return None
- from k_diffusion.sampling import BrownianTreeNoiseSampler
- sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
- current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
- return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds)
- def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
- steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
- sigmas = self.get_sigmas(p, steps)
- sigma_sched = sigmas[steps - t_enc - 1:]
- xi = x + noise * sigma_sched[0]
- extra_params_kwargs = self.initialize(p)
- parameters = inspect.signature(self.func).parameters
- if 'sigma_min' in parameters:
- ## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
- extra_params_kwargs['sigma_min'] = sigma_sched[-2]
- if 'sigma_max' in parameters:
- extra_params_kwargs['sigma_max'] = sigma_sched[0]
- if 'n' in parameters:
- extra_params_kwargs['n'] = len(sigma_sched) - 1
- if 'sigma_sched' in parameters:
- extra_params_kwargs['sigma_sched'] = sigma_sched
- if 'sigmas' in parameters:
- extra_params_kwargs['sigmas'] = sigma_sched
- if self.config.options.get('brownian_noise', False):
- noise_sampler = self.create_noise_sampler(x, sigmas, p)
- extra_params_kwargs['noise_sampler'] = noise_sampler
- self.model_wrap_cfg.init_latent = x
- self.last_latent = x
- extra_args = {
- 'cond': conditioning,
- 'image_cond': image_conditioning,
- 'uncond': unconditional_conditioning,
- 'cond_scale': p.cfg_scale,
- 's_min_uncond': self.s_min_uncond
- }
- samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
- if self.model_wrap_cfg.padded_cond_uncond:
- p.extra_generation_params["Pad conds"] = True
- return samples
- def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
- steps = steps or p.steps
- sigmas = self.get_sigmas(p, steps)
- x = x * sigmas[0]
- extra_params_kwargs = self.initialize(p)
- parameters = inspect.signature(self.func).parameters
- if 'sigma_min' in parameters:
- extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
- extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
- if 'n' in parameters:
- extra_params_kwargs['n'] = steps
- else:
- extra_params_kwargs['sigmas'] = sigmas
- if self.config.options.get('brownian_noise', False):
- noise_sampler = self.create_noise_sampler(x, sigmas, p)
- extra_params_kwargs['noise_sampler'] = noise_sampler
- self.last_latent = x
- samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
- 'cond': conditioning,
- 'image_cond': image_conditioning,
- 'uncond': unconditional_conditioning,
- 'cond_scale': p.cfg_scale,
- 's_min_uncond': self.s_min_uncond
- }, disable=False, callback=self.callback_state, **extra_params_kwargs))
- if self.model_wrap_cfg.padded_cond_uncond:
- p.extra_generation_params["Pad conds"] = True
- return samples
|