123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224 |
- import math
- import ldm.models.diffusion.ddim
- import ldm.models.diffusion.plms
- import numpy as np
- import torch
- from modules.shared import state
- from modules import sd_samplers_common, prompt_parser, shared
- import modules.models.diffusion.uni_pc
- samplers_data_compvis = [
- sd_samplers_common.SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {"default_eta_is_0": True, "uses_ensd": True, "no_sdxl": True}),
- sd_samplers_common.SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {"no_sdxl": True}),
- sd_samplers_common.SamplerData('UniPC', lambda model: VanillaStableDiffusionSampler(modules.models.diffusion.uni_pc.UniPCSampler, model), [], {"no_sdxl": True}),
- ]
- class VanillaStableDiffusionSampler:
- def __init__(self, constructor, sd_model):
- self.sampler = constructor(sd_model)
- self.is_ddim = hasattr(self.sampler, 'p_sample_ddim')
- self.is_plms = hasattr(self.sampler, 'p_sample_plms')
- self.is_unipc = isinstance(self.sampler, modules.models.diffusion.uni_pc.UniPCSampler)
- self.orig_p_sample_ddim = None
- if self.is_plms:
- self.orig_p_sample_ddim = self.sampler.p_sample_plms
- elif self.is_ddim:
- self.orig_p_sample_ddim = self.sampler.p_sample_ddim
- self.mask = None
- self.nmask = None
- self.init_latent = None
- self.sampler_noises = None
- self.step = 0
- self.stop_at = None
- self.eta = None
- self.config = None
- self.last_latent = None
- self.conditioning_key = sd_model.model.conditioning_key
- def number_of_needed_noises(self, p):
- return 0
- def launch_sampling(self, steps, func):
- state.sampling_steps = steps
- state.sampling_step = 0
- try:
- return func()
- except sd_samplers_common.InterruptedException:
- return self.last_latent
- def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
- x_dec, ts, cond, unconditional_conditioning = self.before_sample(x_dec, ts, cond, unconditional_conditioning)
- res = self.orig_p_sample_ddim(x_dec, cond, ts, *args, unconditional_conditioning=unconditional_conditioning, **kwargs)
- x_dec, ts, cond, unconditional_conditioning, res = self.after_sample(x_dec, ts, cond, unconditional_conditioning, res)
- return res
- def before_sample(self, x, ts, cond, unconditional_conditioning):
- if state.interrupted or state.skipped:
- raise sd_samplers_common.InterruptedException
- if self.stop_at is not None and self.step > self.stop_at:
- raise sd_samplers_common.InterruptedException
- # Have to unwrap the inpainting conditioning here to perform pre-processing
- image_conditioning = None
- uc_image_conditioning = None
- if isinstance(cond, dict):
- if self.conditioning_key == "crossattn-adm":
- image_conditioning = cond["c_adm"]
- uc_image_conditioning = unconditional_conditioning["c_adm"]
- else:
- image_conditioning = cond["c_concat"][0]
- cond = cond["c_crossattn"][0]
- unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
- conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
- unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
- assert all(len(conds) == 1 for conds in conds_list), 'composition via AND is not supported for DDIM/PLMS samplers'
- cond = tensor
- # for DDIM, shapes must match, we can't just process cond and uncond independently;
- # filling unconditional_conditioning with repeats of the last vector to match length is
- # not 100% correct but should work well enough
- if unconditional_conditioning.shape[1] < cond.shape[1]:
- last_vector = unconditional_conditioning[:, -1:]
- last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1])
- unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated])
- elif unconditional_conditioning.shape[1] > cond.shape[1]:
- unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]]
- if self.mask is not None:
- img_orig = self.sampler.model.q_sample(self.init_latent, ts)
- x = img_orig * self.mask + self.nmask * x
- # Wrap the image conditioning back up since the DDIM code can accept the dict directly.
- # Note that they need to be lists because it just concatenates them later.
- if image_conditioning is not None:
- if self.conditioning_key == "crossattn-adm":
- cond = {"c_adm": image_conditioning, "c_crossattn": [cond]}
- unconditional_conditioning = {"c_adm": uc_image_conditioning, "c_crossattn": [unconditional_conditioning]}
- else:
- cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
- unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
- return x, ts, cond, unconditional_conditioning
- def update_step(self, last_latent):
- if self.mask is not None:
- self.last_latent = self.init_latent * self.mask + self.nmask * last_latent
- else:
- self.last_latent = last_latent
- sd_samplers_common.store_latent(self.last_latent)
- self.step += 1
- state.sampling_step = self.step
- shared.total_tqdm.update()
- def after_sample(self, x, ts, cond, uncond, res):
- if not self.is_unipc:
- self.update_step(res[1])
- return x, ts, cond, uncond, res
- def unipc_after_update(self, x, model_x):
- self.update_step(x)
- def initialize(self, p):
- if self.is_ddim:
- self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim
- else:
- self.eta = 0.0
- if self.eta != 0.0:
- p.extra_generation_params["Eta DDIM"] = self.eta
- if self.is_unipc:
- keys = [
- ('UniPC variant', 'uni_pc_variant'),
- ('UniPC skip type', 'uni_pc_skip_type'),
- ('UniPC order', 'uni_pc_order'),
- ('UniPC lower order final', 'uni_pc_lower_order_final'),
- ]
- for name, key in keys:
- v = getattr(shared.opts, key)
- if v != shared.opts.get_default(key):
- p.extra_generation_params[name] = v
- for fieldname in ['p_sample_ddim', 'p_sample_plms']:
- if hasattr(self.sampler, fieldname):
- setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
- if self.is_unipc:
- self.sampler.set_hooks(lambda x, t, c, u: self.before_sample(x, t, c, u), lambda x, t, c, u, r: self.after_sample(x, t, c, u, r), lambda x, mx: self.unipc_after_update(x, mx))
- self.mask = p.mask if hasattr(p, 'mask') else None
- self.nmask = p.nmask if hasattr(p, 'nmask') else None
- def adjust_steps_if_invalid(self, p, num_steps):
- if ((self.config.name == 'DDIM') and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS') or (self.config.name == 'UniPC'):
- if self.config.name == 'UniPC' and num_steps < shared.opts.uni_pc_order:
- num_steps = shared.opts.uni_pc_order
- valid_step = 999 / (1000 // num_steps)
- if valid_step == math.floor(valid_step):
- return int(valid_step) + 1
- return num_steps
- def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
- steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
- steps = self.adjust_steps_if_invalid(p, steps)
- self.initialize(p)
- self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
- x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
- self.init_latent = x
- self.last_latent = x
- self.step = 0
- # Wrap the conditioning models with additional image conditioning for inpainting model
- if image_conditioning is not None:
- if self.conditioning_key == "crossattn-adm":
- conditioning = {"c_adm": image_conditioning, "c_crossattn": [conditioning]}
- unconditional_conditioning = {"c_adm": torch.zeros_like(image_conditioning), "c_crossattn": [unconditional_conditioning]}
- else:
- conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
- unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
- samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
- return samples
- def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
- self.initialize(p)
- self.init_latent = None
- self.last_latent = x
- self.step = 0
- steps = self.adjust_steps_if_invalid(p, steps or p.steps)
- # Wrap the conditioning models with additional image conditioning for inpainting model
- # dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape
- if image_conditioning is not None:
- if self.conditioning_key == "crossattn-adm":
- conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_adm": image_conditioning}
- unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_adm": torch.zeros_like(image_conditioning)}
- else:
- conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]}
- unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]}
- samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
- return samples_ddim
|