123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899 |
- from __future__ import annotations
- import torch
- import sgm.models.diffusion
- import sgm.modules.diffusionmodules.denoiser_scaling
- import sgm.modules.diffusionmodules.discretizer
- from modules import devices, shared, prompt_parser
- def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch: prompt_parser.SdConditioning | list[str]):
- for embedder in self.conditioner.embedders:
- embedder.ucg_rate = 0.0
- width = getattr(batch, 'width', 1024)
- height = getattr(batch, 'height', 1024)
- is_negative_prompt = getattr(batch, 'is_negative_prompt', False)
- aesthetic_score = shared.opts.sdxl_refiner_low_aesthetic_score if is_negative_prompt else shared.opts.sdxl_refiner_high_aesthetic_score
- devices_args = dict(device=devices.device, dtype=devices.dtype)
- sdxl_conds = {
- "txt": batch,
- "original_size_as_tuple": torch.tensor([height, width], **devices_args).repeat(len(batch), 1),
- "crop_coords_top_left": torch.tensor([shared.opts.sdxl_crop_top, shared.opts.sdxl_crop_left], **devices_args).repeat(len(batch), 1),
- "target_size_as_tuple": torch.tensor([height, width], **devices_args).repeat(len(batch), 1),
- "aesthetic_score": torch.tensor([aesthetic_score], **devices_args).repeat(len(batch), 1),
- }
- force_zero_negative_prompt = is_negative_prompt and all(x == '' for x in batch)
- c = self.conditioner(sdxl_conds, force_zero_embeddings=['txt'] if force_zero_negative_prompt else [])
- return c
- def apply_model(self: sgm.models.diffusion.DiffusionEngine, x, t, cond):
- return self.model(x, t, cond)
- def get_first_stage_encoding(self, x): # SDXL's encode_first_stage does everything so get_first_stage_encoding is just there for compatibility
- return x
- sgm.models.diffusion.DiffusionEngine.get_learned_conditioning = get_learned_conditioning
- sgm.models.diffusion.DiffusionEngine.apply_model = apply_model
- sgm.models.diffusion.DiffusionEngine.get_first_stage_encoding = get_first_stage_encoding
- def encode_embedding_init_text(self: sgm.modules.GeneralConditioner, init_text, nvpt):
- res = []
- for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'encode_embedding_init_text')]:
- encoded = embedder.encode_embedding_init_text(init_text, nvpt)
- res.append(encoded)
- return torch.cat(res, dim=1)
- def process_texts(self, texts):
- for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'process_texts')]:
- return embedder.process_texts(texts)
- def get_target_prompt_token_count(self, token_count):
- for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'get_target_prompt_token_count')]:
- return embedder.get_target_prompt_token_count(token_count)
- # those additions to GeneralConditioner make it possible to use it as model.cond_stage_model from SD1.5 in exist
- sgm.modules.GeneralConditioner.encode_embedding_init_text = encode_embedding_init_text
- sgm.modules.GeneralConditioner.process_texts = process_texts
- sgm.modules.GeneralConditioner.get_target_prompt_token_count = get_target_prompt_token_count
- def extend_sdxl(model):
- """this adds a bunch of parameters to make SDXL model look a bit more like SD1.5 to the rest of the codebase."""
- dtype = next(model.model.diffusion_model.parameters()).dtype
- model.model.diffusion_model.dtype = dtype
- model.model.conditioning_key = 'crossattn'
- model.cond_stage_key = 'txt'
- # model.cond_stage_model will be set in sd_hijack
- model.parameterization = "v" if isinstance(model.denoiser.scaling, sgm.modules.diffusionmodules.denoiser_scaling.VScaling) else "eps"
- discretization = sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization()
- model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=dtype)
- model.conditioner.wrapped = torch.nn.Module()
- sgm.modules.attention.print = lambda *args: None
- sgm.modules.diffusionmodules.model.print = lambda *args: None
- sgm.modules.diffusionmodules.openaimodel.print = lambda *args: None
- sgm.modules.encoders.modules.print = lambda *args: None
- # this gets the code to load the vanilla attention that we override
- sgm.modules.attention.SDP_IS_AVAILABLE = True
- sgm.modules.attention.XFORMERS_IS_AVAILABLE = False
|