123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- import os
- import torch
- from modules import shared, paths, sd_disable_initialization
- sd_configs_path = shared.sd_configs_path
- sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
- sd_xl_repo_configs_path = os.path.join(paths.paths['Stable Diffusion XL'], "configs", "inference")
- config_default = shared.sd_default_config
- config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
- config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
- config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
- config_sdxl = os.path.join(sd_xl_repo_configs_path, "sd_xl_base.yaml")
- config_sdxl_refiner = os.path.join(sd_xl_repo_configs_path, "sd_xl_refiner.yaml")
- config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
- config_unclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-l-inference.yaml")
- config_unopenclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-h-inference.yaml")
- config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml")
- config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
- config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
- def is_using_v_parameterization_for_sd2(state_dict):
- """
- Detects whether unet in state_dict is using v-parameterization. Returns True if it is. You're welcome.
- """
- import ldm.modules.diffusionmodules.openaimodel
- from modules import devices
- device = devices.cpu
- with sd_disable_initialization.DisableInitialization():
- unet = ldm.modules.diffusionmodules.openaimodel.UNetModel(
- use_checkpoint=True,
- use_fp16=False,
- image_size=32,
- in_channels=4,
- out_channels=4,
- model_channels=320,
- attention_resolutions=[4, 2, 1],
- num_res_blocks=2,
- channel_mult=[1, 2, 4, 4],
- num_head_channels=64,
- use_spatial_transformer=True,
- use_linear_in_transformer=True,
- transformer_depth=1,
- context_dim=1024,
- legacy=False
- )
- unet.eval()
- with torch.no_grad():
- unet_sd = {k.replace("model.diffusion_model.", ""): v for k, v in state_dict.items() if "model.diffusion_model." in k}
- unet.load_state_dict(unet_sd, strict=True)
- unet.to(device=device, dtype=torch.float)
- test_cond = torch.ones((1, 2, 1024), device=device) * 0.5
- x_test = torch.ones((1, 4, 8, 8), device=device) * 0.5
- out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().item()
- return out < -1
- def guess_model_config_from_state_dict(sd, filename):
- sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None)
- diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
- sd2_variations_weight = sd.get('embedder.model.ln_final.weight', None)
- if sd.get('conditioner.embedders.1.model.ln_final.weight', None) is not None:
- return config_sdxl
- if sd.get('conditioner.embedders.0.model.ln_final.weight', None) is not None:
- return config_sdxl_refiner
- elif sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
- return config_depth_model
- elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 768:
- return config_unclip
- elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 1024:
- return config_unopenclip
- if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024:
- if diffusion_model_input.shape[1] == 9:
- return config_sd2_inpainting
- elif is_using_v_parameterization_for_sd2(sd):
- return config_sd2v
- else:
- return config_sd2
- if diffusion_model_input is not None:
- if diffusion_model_input.shape[1] == 9:
- return config_inpainting
- if diffusion_model_input.shape[1] == 8:
- return config_instruct_pix2pix
- if sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) is not None:
- return config_alt_diffusion
- return config_default
- def find_checkpoint_config(state_dict, info):
- if info is None:
- return guess_model_config_from_state_dict(state_dict, "")
- config = find_checkpoint_config_near_filename(info)
- if config is not None:
- return config
- return guess_model_config_from_state_dict(state_dict, info.filename)
- def find_checkpoint_config_near_filename(info):
- if info is None:
- return None
- config = f"{os.path.splitext(info.filename)[0]}.yaml"
- if os.path.exists(config):
- return config
- return None
|