sd_models.py 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643
  1. import collections
  2. import os.path
  3. import sys
  4. import gc
  5. import threading
  6. import torch
  7. import re
  8. import safetensors.torch
  9. from omegaconf import OmegaConf
  10. from os import mkdir
  11. from urllib import request
  12. import ldm.modules.midas as midas
  13. from ldm.util import instantiate_from_config
  14. from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl
  15. from modules.sd_hijack_inpainting import do_inpainting_hijack
  16. from modules.timer import Timer
  17. import tomesd
  18. model_dir = "Stable-diffusion"
  19. model_path = os.path.abspath(os.path.join(paths.models_path, model_dir))
  20. checkpoints_list = {}
  21. checkpoint_aliases = {}
  22. checkpoint_alisases = checkpoint_aliases # for compatibility with old name
  23. checkpoints_loaded = collections.OrderedDict()
  24. class CheckpointInfo:
  25. def __init__(self, filename):
  26. self.filename = filename
  27. abspath = os.path.abspath(filename)
  28. if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir):
  29. name = abspath.replace(shared.cmd_opts.ckpt_dir, '')
  30. elif abspath.startswith(model_path):
  31. name = abspath.replace(model_path, '')
  32. else:
  33. name = os.path.basename(filename)
  34. if name.startswith("\\") or name.startswith("/"):
  35. name = name[1:]
  36. self.name = name
  37. self.name_for_extra = os.path.splitext(os.path.basename(filename))[0]
  38. self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
  39. self.hash = model_hash(filename)
  40. self.sha256 = hashes.sha256_from_cache(self.filename, f"checkpoint/{name}")
  41. self.shorthash = self.sha256[0:10] if self.sha256 else None
  42. self.title = name if self.shorthash is None else f'{name} [{self.shorthash}]'
  43. self.ids = [self.hash, self.model_name, self.title, name, f'{name} [{self.hash}]'] + ([self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] if self.shorthash else [])
  44. self.metadata = {}
  45. _, ext = os.path.splitext(self.filename)
  46. if ext.lower() == ".safetensors":
  47. try:
  48. self.metadata = read_metadata_from_safetensors(filename)
  49. except Exception as e:
  50. errors.display(e, f"reading checkpoint metadata: {filename}")
  51. def register(self):
  52. checkpoints_list[self.title] = self
  53. for id in self.ids:
  54. checkpoint_aliases[id] = self
  55. def calculate_shorthash(self):
  56. self.sha256 = hashes.sha256(self.filename, f"checkpoint/{self.name}")
  57. if self.sha256 is None:
  58. return
  59. self.shorthash = self.sha256[0:10]
  60. if self.shorthash not in self.ids:
  61. self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]']
  62. checkpoints_list.pop(self.title)
  63. self.title = f'{self.name} [{self.shorthash}]'
  64. self.register()
  65. return self.shorthash
  66. try:
  67. # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
  68. from transformers import logging, CLIPModel # noqa: F401
  69. logging.set_verbosity_error()
  70. except Exception:
  71. pass
  72. def setup_model():
  73. os.makedirs(model_path, exist_ok=True)
  74. enable_midas_autodownload()
  75. def checkpoint_tiles():
  76. def convert(name):
  77. return int(name) if name.isdigit() else name.lower()
  78. def alphanumeric_key(key):
  79. return [convert(c) for c in re.split('([0-9]+)', key)]
  80. return sorted([x.title for x in checkpoints_list.values()], key=alphanumeric_key)
  81. def list_models():
  82. checkpoints_list.clear()
  83. checkpoint_aliases.clear()
  84. cmd_ckpt = shared.cmd_opts.ckpt
  85. if shared.cmd_opts.no_download_sd_model or cmd_ckpt != shared.sd_model_file or os.path.exists(cmd_ckpt):
  86. model_url = None
  87. else:
  88. model_url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.safetensors"
  89. model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt", ".safetensors"], download_name="v1-5-pruned-emaonly.safetensors", ext_blacklist=[".vae.ckpt", ".vae.safetensors"])
  90. if os.path.exists(cmd_ckpt):
  91. checkpoint_info = CheckpointInfo(cmd_ckpt)
  92. checkpoint_info.register()
  93. shared.opts.data['sd_model_checkpoint'] = checkpoint_info.title
  94. elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file:
  95. print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr)
  96. for filename in sorted(model_list, key=str.lower):
  97. checkpoint_info = CheckpointInfo(filename)
  98. checkpoint_info.register()
  99. def get_closet_checkpoint_match(search_string):
  100. checkpoint_info = checkpoint_aliases.get(search_string, None)
  101. if checkpoint_info is not None:
  102. return checkpoint_info
  103. found = sorted([info for info in checkpoints_list.values() if search_string in info.title], key=lambda x: len(x.title))
  104. if found:
  105. return found[0]
  106. return None
  107. def model_hash(filename):
  108. """old hash that only looks at a small part of the file and is prone to collisions"""
  109. try:
  110. with open(filename, "rb") as file:
  111. import hashlib
  112. m = hashlib.sha256()
  113. file.seek(0x100000)
  114. m.update(file.read(0x10000))
  115. return m.hexdigest()[0:8]
  116. except FileNotFoundError:
  117. return 'NOFILE'
  118. def select_checkpoint():
  119. """Raises `FileNotFoundError` if no checkpoints are found."""
  120. model_checkpoint = shared.opts.sd_model_checkpoint
  121. checkpoint_info = checkpoint_aliases.get(model_checkpoint, None)
  122. if checkpoint_info is not None:
  123. return checkpoint_info
  124. if len(checkpoints_list) == 0:
  125. error_message = "No checkpoints found. When searching for checkpoints, looked at:"
  126. if shared.cmd_opts.ckpt is not None:
  127. error_message += f"\n - file {os.path.abspath(shared.cmd_opts.ckpt)}"
  128. error_message += f"\n - directory {model_path}"
  129. if shared.cmd_opts.ckpt_dir is not None:
  130. error_message += f"\n - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}"
  131. error_message += "Can't run without a checkpoint. Find and place a .ckpt or .safetensors file into any of those locations."
  132. raise FileNotFoundError(error_message)
  133. checkpoint_info = next(iter(checkpoints_list.values()))
  134. if model_checkpoint is not None:
  135. print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr)
  136. return checkpoint_info
  137. checkpoint_dict_replacements = {
  138. 'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
  139. 'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
  140. 'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
  141. }
  142. def transform_checkpoint_dict_key(k):
  143. for text, replacement in checkpoint_dict_replacements.items():
  144. if k.startswith(text):
  145. k = replacement + k[len(text):]
  146. return k
  147. def get_state_dict_from_checkpoint(pl_sd):
  148. pl_sd = pl_sd.pop("state_dict", pl_sd)
  149. pl_sd.pop("state_dict", None)
  150. sd = {}
  151. for k, v in pl_sd.items():
  152. new_key = transform_checkpoint_dict_key(k)
  153. if new_key is not None:
  154. sd[new_key] = v
  155. pl_sd.clear()
  156. pl_sd.update(sd)
  157. return pl_sd
  158. def read_metadata_from_safetensors(filename):
  159. import json
  160. with open(filename, mode="rb") as file:
  161. metadata_len = file.read(8)
  162. metadata_len = int.from_bytes(metadata_len, "little")
  163. json_start = file.read(2)
  164. assert metadata_len > 2 and json_start in (b'{"', b"{'"), f"{filename} is not a safetensors file"
  165. json_data = json_start + file.read(metadata_len-2)
  166. json_obj = json.loads(json_data)
  167. res = {}
  168. for k, v in json_obj.get("__metadata__", {}).items():
  169. res[k] = v
  170. if isinstance(v, str) and v[0:1] == '{':
  171. try:
  172. res[k] = json.loads(v)
  173. except Exception:
  174. pass
  175. return res
  176. def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
  177. _, extension = os.path.splitext(checkpoint_file)
  178. if extension.lower() == ".safetensors":
  179. device = map_location or shared.weight_load_location or devices.get_optimal_device_name()
  180. if not shared.opts.disable_mmap_load_safetensors:
  181. pl_sd = safetensors.torch.load_file(checkpoint_file, device=device)
  182. else:
  183. pl_sd = safetensors.torch.load(open(checkpoint_file, 'rb').read())
  184. pl_sd = {k: v.to(device) for k, v in pl_sd.items()}
  185. else:
  186. pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)
  187. if print_global_state and "global_step" in pl_sd:
  188. print(f"Global Step: {pl_sd['global_step']}")
  189. sd = get_state_dict_from_checkpoint(pl_sd)
  190. return sd
  191. def get_checkpoint_state_dict(checkpoint_info: CheckpointInfo, timer):
  192. sd_model_hash = checkpoint_info.calculate_shorthash()
  193. timer.record("calculate hash")
  194. if checkpoint_info in checkpoints_loaded:
  195. # use checkpoint cache
  196. print(f"Loading weights [{sd_model_hash}] from cache")
  197. return checkpoints_loaded[checkpoint_info]
  198. print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}")
  199. res = read_state_dict(checkpoint_info.filename)
  200. timer.record("load weights from disk")
  201. return res
  202. def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer):
  203. sd_model_hash = checkpoint_info.calculate_shorthash()
  204. timer.record("calculate hash")
  205. shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title
  206. if state_dict is None:
  207. state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
  208. model.is_sdxl = hasattr(model, 'conditioner')
  209. model.is_sd2 = not model.is_sdxl and hasattr(model.cond_stage_model, 'model')
  210. model.is_sd1 = not model.is_sdxl and not model.is_sd2
  211. if model.is_sdxl:
  212. sd_models_xl.extend_sdxl(model)
  213. model.load_state_dict(state_dict, strict=False)
  214. del state_dict
  215. timer.record("apply weights to model")
  216. if shared.opts.sd_checkpoint_cache > 0:
  217. # cache newly loaded model
  218. checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
  219. if shared.cmd_opts.opt_channelslast:
  220. model.to(memory_format=torch.channels_last)
  221. timer.record("apply channels_last")
  222. if not shared.cmd_opts.no_half:
  223. vae = model.first_stage_model
  224. depth_model = getattr(model, 'depth_model', None)
  225. # with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
  226. if shared.cmd_opts.no_half_vae:
  227. model.first_stage_model = None
  228. # with --upcast-sampling, don't convert the depth model weights to float16
  229. if shared.cmd_opts.upcast_sampling and depth_model:
  230. model.depth_model = None
  231. model.half()
  232. model.first_stage_model = vae
  233. if depth_model:
  234. model.depth_model = depth_model
  235. timer.record("apply half()")
  236. devices.dtype_unet = torch.float16 if model.is_sdxl and not shared.cmd_opts.no_half else model.model.diffusion_model.dtype
  237. devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16
  238. model.first_stage_model.to(devices.dtype_vae)
  239. timer.record("apply dtype to VAE")
  240. # clean up cache if limit is reached
  241. while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
  242. checkpoints_loaded.popitem(last=False)
  243. model.sd_model_hash = sd_model_hash
  244. model.sd_model_checkpoint = checkpoint_info.filename
  245. model.sd_checkpoint_info = checkpoint_info
  246. shared.opts.data["sd_checkpoint_hash"] = checkpoint_info.sha256
  247. if hasattr(model, 'logvar'):
  248. model.logvar = model.logvar.to(devices.device) # fix for training
  249. sd_vae.delete_base_vae()
  250. sd_vae.clear_loaded_vae()
  251. vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename)
  252. sd_vae.load_vae(model, vae_file, vae_source)
  253. timer.record("load VAE")
  254. def enable_midas_autodownload():
  255. """
  256. Gives the ldm.modules.midas.api.load_model function automatic downloading.
  257. When the 512-depth-ema model, and other future models like it, is loaded,
  258. it calls midas.api.load_model to load the associated midas depth model.
  259. This function applies a wrapper to download the model to the correct
  260. location automatically.
  261. """
  262. midas_path = os.path.join(paths.models_path, 'midas')
  263. # stable-diffusion-stability-ai hard-codes the midas model path to
  264. # a location that differs from where other scripts using this model look.
  265. # HACK: Overriding the path here.
  266. for k, v in midas.api.ISL_PATHS.items():
  267. file_name = os.path.basename(v)
  268. midas.api.ISL_PATHS[k] = os.path.join(midas_path, file_name)
  269. midas_urls = {
  270. "dpt_large": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt",
  271. "dpt_hybrid": "https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt",
  272. "midas_v21": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21-f6b98070.pt",
  273. "midas_v21_small": "https://github.com/AlexeyAB/MiDaS/releases/download/midas_dpt/midas_v21_small-70d6b9c8.pt",
  274. }
  275. midas.api.load_model_inner = midas.api.load_model
  276. def load_model_wrapper(model_type):
  277. path = midas.api.ISL_PATHS[model_type]
  278. if not os.path.exists(path):
  279. if not os.path.exists(midas_path):
  280. mkdir(midas_path)
  281. print(f"Downloading midas model weights for {model_type} to {path}")
  282. request.urlretrieve(midas_urls[model_type], path)
  283. print(f"{model_type} downloaded")
  284. return midas.api.load_model_inner(model_type)
  285. midas.api.load_model = load_model_wrapper
  286. def repair_config(sd_config):
  287. if not hasattr(sd_config.model.params, "use_ema"):
  288. sd_config.model.params.use_ema = False
  289. if hasattr(sd_config.model.params, 'unet_config'):
  290. if shared.cmd_opts.no_half:
  291. sd_config.model.params.unet_config.params.use_fp16 = False
  292. elif shared.cmd_opts.upcast_sampling:
  293. sd_config.model.params.unet_config.params.use_fp16 = True
  294. if getattr(sd_config.model.params.first_stage_config.params.ddconfig, "attn_type", None) == "vanilla-xformers" and not shared.xformers_available:
  295. sd_config.model.params.first_stage_config.params.ddconfig.attn_type = "vanilla"
  296. # For UnCLIP-L, override the hardcoded karlo directory
  297. if hasattr(sd_config.model.params, "noise_aug_config") and hasattr(sd_config.model.params.noise_aug_config.params, "clip_stats_path"):
  298. karlo_path = os.path.join(paths.models_path, 'karlo')
  299. sd_config.model.params.noise_aug_config.params.clip_stats_path = sd_config.model.params.noise_aug_config.params.clip_stats_path.replace("checkpoints/karlo_models", karlo_path)
  300. sd1_clip_weight = 'cond_stage_model.transformer.text_model.embeddings.token_embedding.weight'
  301. sd2_clip_weight = 'cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight'
  302. sdxl_clip_weight = 'conditioner.embedders.1.model.ln_final.weight'
  303. sdxl_refiner_clip_weight = 'conditioner.embedders.0.model.ln_final.weight'
  304. class SdModelData:
  305. def __init__(self):
  306. self.sd_model = None
  307. self.was_loaded_at_least_once = False
  308. self.lock = threading.Lock()
  309. def get_sd_model(self):
  310. if self.was_loaded_at_least_once:
  311. return self.sd_model
  312. if self.sd_model is None:
  313. with self.lock:
  314. if self.sd_model is not None or self.was_loaded_at_least_once:
  315. return self.sd_model
  316. try:
  317. load_model()
  318. except Exception as e:
  319. errors.display(e, "loading stable diffusion model", full_traceback=True)
  320. print("", file=sys.stderr)
  321. print("Stable diffusion model failed to load", file=sys.stderr)
  322. self.sd_model = None
  323. return self.sd_model
  324. def set_sd_model(self, v):
  325. self.sd_model = v
  326. model_data = SdModelData()
  327. def get_empty_cond(sd_model):
  328. if hasattr(sd_model, 'conditioner'):
  329. d = sd_model.get_learned_conditioning([""])
  330. return d['crossattn']
  331. else:
  332. return sd_model.cond_stage_model([""])
  333. def load_model(checkpoint_info=None, already_loaded_state_dict=None):
  334. from modules import lowvram, sd_hijack
  335. checkpoint_info = checkpoint_info or select_checkpoint()
  336. if model_data.sd_model:
  337. sd_hijack.model_hijack.undo_hijack(model_data.sd_model)
  338. model_data.sd_model = None
  339. gc.collect()
  340. devices.torch_gc()
  341. do_inpainting_hijack()
  342. timer = Timer()
  343. if already_loaded_state_dict is not None:
  344. state_dict = already_loaded_state_dict
  345. else:
  346. state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
  347. checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
  348. clip_is_included_into_sd = any(x for x in [sd1_clip_weight, sd2_clip_weight, sdxl_clip_weight, sdxl_refiner_clip_weight] if x in state_dict)
  349. timer.record("find config")
  350. sd_config = OmegaConf.load(checkpoint_config)
  351. repair_config(sd_config)
  352. timer.record("load config")
  353. print(f"Creating model from config: {checkpoint_config}")
  354. sd_model = None
  355. try:
  356. with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd or shared.cmd_opts.do_not_download_clip):
  357. sd_model = instantiate_from_config(sd_config.model)
  358. except Exception:
  359. pass
  360. if sd_model is None:
  361. print('Failed to create model quickly; will retry using slow method.', file=sys.stderr)
  362. sd_model = instantiate_from_config(sd_config.model)
  363. sd_model.used_config = checkpoint_config
  364. timer.record("create model")
  365. load_model_weights(sd_model, checkpoint_info, state_dict, timer)
  366. if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
  367. lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
  368. else:
  369. sd_model.to(shared.device)
  370. timer.record("move model to device")
  371. sd_hijack.model_hijack.hijack(sd_model)
  372. timer.record("hijack")
  373. sd_model.eval()
  374. model_data.sd_model = sd_model
  375. model_data.was_loaded_at_least_once = True
  376. sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model
  377. timer.record("load textual inversion embeddings")
  378. script_callbacks.model_loaded_callback(sd_model)
  379. timer.record("scripts callbacks")
  380. with devices.autocast(), torch.no_grad():
  381. sd_model.cond_stage_model_empty_prompt = get_empty_cond(sd_model)
  382. timer.record("calculate empty prompt")
  383. print(f"Model loaded in {timer.summary()}.")
  384. return sd_model
  385. def reload_model_weights(sd_model=None, info=None):
  386. from modules import lowvram, devices, sd_hijack
  387. checkpoint_info = info or select_checkpoint()
  388. if not sd_model:
  389. sd_model = model_data.sd_model
  390. if sd_model is None: # previous model load failed
  391. current_checkpoint_info = None
  392. else:
  393. current_checkpoint_info = sd_model.sd_checkpoint_info
  394. if sd_model.sd_model_checkpoint == checkpoint_info.filename:
  395. return
  396. sd_unet.apply_unet("None")
  397. if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
  398. lowvram.send_everything_to_cpu()
  399. else:
  400. sd_model.to(devices.cpu)
  401. sd_hijack.model_hijack.undo_hijack(sd_model)
  402. timer = Timer()
  403. state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
  404. checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
  405. timer.record("find config")
  406. if sd_model is None or checkpoint_config != sd_model.used_config:
  407. del sd_model
  408. load_model(checkpoint_info, already_loaded_state_dict=state_dict)
  409. return model_data.sd_model
  410. try:
  411. load_model_weights(sd_model, checkpoint_info, state_dict, timer)
  412. except Exception:
  413. print("Failed to load checkpoint, restoring previous")
  414. load_model_weights(sd_model, current_checkpoint_info, None, timer)
  415. raise
  416. finally:
  417. sd_hijack.model_hijack.hijack(sd_model)
  418. timer.record("hijack")
  419. script_callbacks.model_loaded_callback(sd_model)
  420. timer.record("script callbacks")
  421. if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
  422. sd_model.to(devices.device)
  423. timer.record("move model to device")
  424. print(f"Weights loaded in {timer.summary()}.")
  425. return sd_model
  426. def unload_model_weights(sd_model=None, info=None):
  427. from modules import devices, sd_hijack
  428. timer = Timer()
  429. if model_data.sd_model:
  430. model_data.sd_model.to(devices.cpu)
  431. sd_hijack.model_hijack.undo_hijack(model_data.sd_model)
  432. model_data.sd_model = None
  433. sd_model = None
  434. gc.collect()
  435. devices.torch_gc()
  436. print(f"Unloaded weights {timer.summary()}.")
  437. return sd_model
  438. def apply_token_merging(sd_model, token_merging_ratio):
  439. """
  440. Applies speed and memory optimizations from tomesd.
  441. """
  442. current_token_merging_ratio = getattr(sd_model, 'applied_token_merged_ratio', 0)
  443. if current_token_merging_ratio == token_merging_ratio:
  444. return
  445. if current_token_merging_ratio > 0:
  446. tomesd.remove_patch(sd_model)
  447. if token_merging_ratio > 0:
  448. tomesd.apply_patch(
  449. sd_model,
  450. ratio=token_merging_ratio,
  451. use_rand=False, # can cause issues with some samplers
  452. merge_attn=True,
  453. merge_crossattn=False,
  454. merge_mlp=False
  455. )
  456. sd_model.applied_token_merged_ratio = token_merging_ratio