123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668 |
- from __future__ import annotations
- import math
- import psutil
- import torch
- from torch import einsum
- from ldm.util import default
- from einops import rearrange
- from modules import shared, errors, devices, sub_quadratic_attention
- from modules.hypernetworks import hypernetwork
- import ldm.modules.attention
- import ldm.modules.diffusionmodules.model
- import sgm.modules.attention
- import sgm.modules.diffusionmodules.model
- diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
- sgm_diffusionmodules_model_AttnBlock_forward = sgm.modules.diffusionmodules.model.AttnBlock.forward
- class SdOptimization:
- name: str = None
- label: str | None = None
- cmd_opt: str | None = None
- priority: int = 0
- def title(self):
- if self.label is None:
- return self.name
- return f"{self.name} - {self.label}"
- def is_available(self):
- return True
- def apply(self):
- pass
- def undo(self):
- ldm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
- ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward
- sgm.modules.attention.CrossAttention.forward = hypernetwork.attention_CrossAttention_forward
- sgm.modules.diffusionmodules.model.AttnBlock.forward = sgm_diffusionmodules_model_AttnBlock_forward
- class SdOptimizationXformers(SdOptimization):
- name = "xformers"
- cmd_opt = "xformers"
- priority = 100
- def is_available(self):
- return shared.cmd_opts.force_enable_xformers or (shared.xformers_available and torch.cuda.is_available() and (6, 0) <= torch.cuda.get_device_capability(shared.device) <= (9, 0))
- def apply(self):
- ldm.modules.attention.CrossAttention.forward = xformers_attention_forward
- ldm.modules.diffusionmodules.model.AttnBlock.forward = xformers_attnblock_forward
- sgm.modules.attention.CrossAttention.forward = xformers_attention_forward
- sgm.modules.diffusionmodules.model.AttnBlock.forward = xformers_attnblock_forward
- class SdOptimizationSdpNoMem(SdOptimization):
- name = "sdp-no-mem"
- label = "scaled dot product without memory efficient attention"
- cmd_opt = "opt_sdp_no_mem_attention"
- priority = 80
- def is_available(self):
- return hasattr(torch.nn.functional, "scaled_dot_product_attention") and callable(torch.nn.functional.scaled_dot_product_attention)
- def apply(self):
- ldm.modules.attention.CrossAttention.forward = scaled_dot_product_no_mem_attention_forward
- ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_no_mem_attnblock_forward
- sgm.modules.attention.CrossAttention.forward = scaled_dot_product_no_mem_attention_forward
- sgm.modules.diffusionmodules.model.AttnBlock.forward = sdp_no_mem_attnblock_forward
- class SdOptimizationSdp(SdOptimizationSdpNoMem):
- name = "sdp"
- label = "scaled dot product"
- cmd_opt = "opt_sdp_attention"
- priority = 70
- def apply(self):
- ldm.modules.attention.CrossAttention.forward = scaled_dot_product_attention_forward
- ldm.modules.diffusionmodules.model.AttnBlock.forward = sdp_attnblock_forward
- sgm.modules.attention.CrossAttention.forward = scaled_dot_product_attention_forward
- sgm.modules.diffusionmodules.model.AttnBlock.forward = sdp_attnblock_forward
- class SdOptimizationSubQuad(SdOptimization):
- name = "sub-quadratic"
- cmd_opt = "opt_sub_quad_attention"
- priority = 10
- def apply(self):
- ldm.modules.attention.CrossAttention.forward = sub_quad_attention_forward
- ldm.modules.diffusionmodules.model.AttnBlock.forward = sub_quad_attnblock_forward
- sgm.modules.attention.CrossAttention.forward = sub_quad_attention_forward
- sgm.modules.diffusionmodules.model.AttnBlock.forward = sub_quad_attnblock_forward
- class SdOptimizationV1(SdOptimization):
- name = "V1"
- label = "original v1"
- cmd_opt = "opt_split_attention_v1"
- priority = 10
- def apply(self):
- ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1
- sgm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1
- class SdOptimizationInvokeAI(SdOptimization):
- name = "InvokeAI"
- cmd_opt = "opt_split_attention_invokeai"
- @property
- def priority(self):
- return 1000 if not torch.cuda.is_available() else 10
- def apply(self):
- ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_invokeAI
- sgm.modules.attention.CrossAttention.forward = split_cross_attention_forward_invokeAI
- class SdOptimizationDoggettx(SdOptimization):
- name = "Doggettx"
- cmd_opt = "opt_split_attention"
- priority = 90
- def apply(self):
- ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward
- ldm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward
- sgm.modules.attention.CrossAttention.forward = split_cross_attention_forward
- sgm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward
- def list_optimizers(res):
- res.extend([
- SdOptimizationXformers(),
- SdOptimizationSdpNoMem(),
- SdOptimizationSdp(),
- SdOptimizationSubQuad(),
- SdOptimizationV1(),
- SdOptimizationInvokeAI(),
- SdOptimizationDoggettx(),
- ])
- if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers:
- try:
- import xformers.ops
- shared.xformers_available = True
- except Exception:
- errors.report("Cannot import xformers", exc_info=True)
- def get_available_vram():
- if shared.device.type == 'cuda':
- stats = torch.cuda.memory_stats(shared.device)
- mem_active = stats['active_bytes.all.current']
- mem_reserved = stats['reserved_bytes.all.current']
- mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device())
- mem_free_torch = mem_reserved - mem_active
- mem_free_total = mem_free_cuda + mem_free_torch
- return mem_free_total
- else:
- return psutil.virtual_memory().available
- # see https://github.com/basujindal/stable-diffusion/pull/117 for discussion
- def split_cross_attention_forward_v1(self, x, context=None, mask=None, **kwargs):
- h = self.heads
- q_in = self.to_q(x)
- context = default(context, x)
- context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
- k_in = self.to_k(context_k)
- v_in = self.to_v(context_v)
- del context, context_k, context_v, x
- q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in))
- del q_in, k_in, v_in
- dtype = q.dtype
- if shared.opts.upcast_attn:
- q, k, v = q.float(), k.float(), v.float()
- with devices.without_autocast(disable=not shared.opts.upcast_attn):
- r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
- for i in range(0, q.shape[0], 2):
- end = i + 2
- s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
- s1 *= self.scale
- s2 = s1.softmax(dim=-1)
- del s1
- r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
- del s2
- del q, k, v
- r1 = r1.to(dtype)
- r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
- del r1
- return self.to_out(r2)
- # taken from https://github.com/Doggettx/stable-diffusion and modified
- def split_cross_attention_forward(self, x, context=None, mask=None, **kwargs):
- h = self.heads
- q_in = self.to_q(x)
- context = default(context, x)
- context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
- k_in = self.to_k(context_k)
- v_in = self.to_v(context_v)
- dtype = q_in.dtype
- if shared.opts.upcast_attn:
- q_in, k_in, v_in = q_in.float(), k_in.float(), v_in if v_in.device.type == 'mps' else v_in.float()
- with devices.without_autocast(disable=not shared.opts.upcast_attn):
- k_in = k_in * self.scale
- del context, x
- q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q_in, k_in, v_in))
- del q_in, k_in, v_in
- r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
- mem_free_total = get_available_vram()
- gb = 1024 ** 3
- tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
- modifier = 3 if q.element_size() == 2 else 2.5
- mem_required = tensor_size * modifier
- steps = 1
- if mem_required > mem_free_total:
- steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
- # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
- # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
- if steps > 64:
- max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
- raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
- f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
- slice_size = q.shape[1] // steps
- for i in range(0, q.shape[1], slice_size):
- end = min(i + slice_size, q.shape[1])
- s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
- s2 = s1.softmax(dim=-1, dtype=q.dtype)
- del s1
- r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
- del s2
- del q, k, v
- r1 = r1.to(dtype)
- r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
- del r1
- return self.to_out(r2)
- # -- Taken from https://github.com/invoke-ai/InvokeAI and modified --
- mem_total_gb = psutil.virtual_memory().total // (1 << 30)
- def einsum_op_compvis(q, k, v):
- s = einsum('b i d, b j d -> b i j', q, k)
- s = s.softmax(dim=-1, dtype=s.dtype)
- return einsum('b i j, b j d -> b i d', s, v)
- def einsum_op_slice_0(q, k, v, slice_size):
- r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
- for i in range(0, q.shape[0], slice_size):
- end = i + slice_size
- r[i:end] = einsum_op_compvis(q[i:end], k[i:end], v[i:end])
- return r
- def einsum_op_slice_1(q, k, v, slice_size):
- r = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
- for i in range(0, q.shape[1], slice_size):
- end = i + slice_size
- r[:, i:end] = einsum_op_compvis(q[:, i:end], k, v)
- return r
- def einsum_op_mps_v1(q, k, v):
- if q.shape[0] * q.shape[1] <= 2**16: # (512x512) max q.shape[1]: 4096
- return einsum_op_compvis(q, k, v)
- else:
- slice_size = math.floor(2**30 / (q.shape[0] * q.shape[1]))
- if slice_size % 4096 == 0:
- slice_size -= 1
- return einsum_op_slice_1(q, k, v, slice_size)
- def einsum_op_mps_v2(q, k, v):
- if mem_total_gb > 8 and q.shape[0] * q.shape[1] <= 2**16:
- return einsum_op_compvis(q, k, v)
- else:
- return einsum_op_slice_0(q, k, v, 1)
- def einsum_op_tensor_mem(q, k, v, max_tensor_mb):
- size_mb = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() // (1 << 20)
- if size_mb <= max_tensor_mb:
- return einsum_op_compvis(q, k, v)
- div = 1 << int((size_mb - 1) / max_tensor_mb).bit_length()
- if div <= q.shape[0]:
- return einsum_op_slice_0(q, k, v, q.shape[0] // div)
- return einsum_op_slice_1(q, k, v, max(q.shape[1] // div, 1))
- def einsum_op_cuda(q, k, v):
- stats = torch.cuda.memory_stats(q.device)
- mem_active = stats['active_bytes.all.current']
- mem_reserved = stats['reserved_bytes.all.current']
- mem_free_cuda, _ = torch.cuda.mem_get_info(q.device)
- mem_free_torch = mem_reserved - mem_active
- mem_free_total = mem_free_cuda + mem_free_torch
- # Divide factor of safety as there's copying and fragmentation
- return einsum_op_tensor_mem(q, k, v, mem_free_total / 3.3 / (1 << 20))
- def einsum_op(q, k, v):
- if q.device.type == 'cuda':
- return einsum_op_cuda(q, k, v)
- if q.device.type == 'mps':
- if mem_total_gb >= 32 and q.shape[0] % 32 != 0 and q.shape[0] * q.shape[1] < 2**18:
- return einsum_op_mps_v1(q, k, v)
- return einsum_op_mps_v2(q, k, v)
- # Smaller slices are faster due to L2/L3/SLC caches.
- # Tested on i7 with 8MB L3 cache.
- return einsum_op_tensor_mem(q, k, v, 32)
- def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None, **kwargs):
- h = self.heads
- q = self.to_q(x)
- context = default(context, x)
- context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
- k = self.to_k(context_k)
- v = self.to_v(context_v)
- del context, context_k, context_v, x
- dtype = q.dtype
- if shared.opts.upcast_attn:
- q, k, v = q.float(), k.float(), v if v.device.type == 'mps' else v.float()
- with devices.without_autocast(disable=not shared.opts.upcast_attn):
- k = k * self.scale
- q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v))
- r = einsum_op(q, k, v)
- r = r.to(dtype)
- return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
- # -- End of code from https://github.com/invoke-ai/InvokeAI --
- # Based on Birch-san's modified implementation of sub-quadratic attention from https://github.com/Birch-san/diffusers/pull/1
- # The sub_quad_attention_forward function is under the MIT License listed under Memory Efficient Attention in the Licenses section of the web UI interface
- def sub_quad_attention_forward(self, x, context=None, mask=None, **kwargs):
- assert mask is None, "attention-mask not currently implemented for SubQuadraticCrossAttnProcessor."
- h = self.heads
- q = self.to_q(x)
- context = default(context, x)
- context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
- k = self.to_k(context_k)
- v = self.to_v(context_v)
- del context, context_k, context_v, x
- q = q.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
- k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
- v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
- if q.device.type == 'mps':
- q, k, v = q.contiguous(), k.contiguous(), v.contiguous()
- dtype = q.dtype
- if shared.opts.upcast_attn:
- q, k = q.float(), k.float()
- x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)
- x = x.to(dtype)
- x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2)
- out_proj, dropout = self.to_out
- x = out_proj(x)
- x = dropout(x)
- return x
- def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_size_min=None, chunk_threshold=None, use_checkpoint=True):
- bytes_per_token = torch.finfo(q.dtype).bits//8
- batch_x_heads, q_tokens, _ = q.shape
- _, k_tokens, _ = k.shape
- qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
- if chunk_threshold is None:
- chunk_threshold_bytes = int(get_available_vram() * 0.9) if q.device.type == 'mps' else int(get_available_vram() * 0.7)
- elif chunk_threshold == 0:
- chunk_threshold_bytes = None
- else:
- chunk_threshold_bytes = int(0.01 * chunk_threshold * get_available_vram())
- if kv_chunk_size_min is None and chunk_threshold_bytes is not None:
- kv_chunk_size_min = chunk_threshold_bytes // (batch_x_heads * bytes_per_token * (k.shape[2] + v.shape[2]))
- elif kv_chunk_size_min == 0:
- kv_chunk_size_min = None
- if chunk_threshold_bytes is not None and qk_matmul_size_bytes <= chunk_threshold_bytes:
- # the big matmul fits into our memory limit; do everything in 1 chunk,
- # i.e. send it down the unchunked fast-path
- kv_chunk_size = k_tokens
- with devices.without_autocast(disable=q.dtype == v.dtype):
- return sub_quadratic_attention.efficient_dot_product_attention(
- q,
- k,
- v,
- query_chunk_size=q_chunk_size,
- kv_chunk_size=kv_chunk_size,
- kv_chunk_size_min = kv_chunk_size_min,
- use_checkpoint=use_checkpoint,
- )
- def get_xformers_flash_attention_op(q, k, v):
- if not shared.cmd_opts.xformers_flash_attention:
- return None
- try:
- flash_attention_op = xformers.ops.MemoryEfficientAttentionFlashAttentionOp
- fw, bw = flash_attention_op
- if fw.supports(xformers.ops.fmha.Inputs(query=q, key=k, value=v, attn_bias=None)):
- return flash_attention_op
- except Exception as e:
- errors.display_once(e, "enabling flash attention")
- return None
- def xformers_attention_forward(self, x, context=None, mask=None, **kwargs):
- h = self.heads
- q_in = self.to_q(x)
- context = default(context, x)
- context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
- k_in = self.to_k(context_k)
- v_in = self.to_v(context_v)
- q, k, v = (rearrange(t, 'b n (h d) -> b n h d', h=h) for t in (q_in, k_in, v_in))
- del q_in, k_in, v_in
- dtype = q.dtype
- if shared.opts.upcast_attn:
- q, k, v = q.float(), k.float(), v.float()
- out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v))
- out = out.to(dtype)
- out = rearrange(out, 'b n h d -> b n (h d)', h=h)
- return self.to_out(out)
- # Based on Diffusers usage of scaled dot product attention from https://github.com/huggingface/diffusers/blob/c7da8fd23359a22d0df2741688b5b4f33c26df21/src/diffusers/models/cross_attention.py
- # The scaled_dot_product_attention_forward function contains parts of code under Apache-2.0 license listed under Scaled Dot Product Attention in the Licenses section of the web UI interface
- def scaled_dot_product_attention_forward(self, x, context=None, mask=None, **kwargs):
- batch_size, sequence_length, inner_dim = x.shape
- if mask is not None:
- mask = self.prepare_attention_mask(mask, sequence_length, batch_size)
- mask = mask.view(batch_size, self.heads, -1, mask.shape[-1])
- h = self.heads
- q_in = self.to_q(x)
- context = default(context, x)
- context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
- k_in = self.to_k(context_k)
- v_in = self.to_v(context_v)
- head_dim = inner_dim // h
- q = q_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
- k = k_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
- v = v_in.view(batch_size, -1, h, head_dim).transpose(1, 2)
- del q_in, k_in, v_in
- dtype = q.dtype
- if shared.opts.upcast_attn:
- q, k, v = q.float(), k.float(), v.float()
- # the output of sdp = (batch, num_heads, seq_len, head_dim)
- hidden_states = torch.nn.functional.scaled_dot_product_attention(
- q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False
- )
- hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, h * head_dim)
- hidden_states = hidden_states.to(dtype)
- # linear proj
- hidden_states = self.to_out[0](hidden_states)
- # dropout
- hidden_states = self.to_out[1](hidden_states)
- return hidden_states
- def scaled_dot_product_no_mem_attention_forward(self, x, context=None, mask=None, **kwargs):
- with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
- return scaled_dot_product_attention_forward(self, x, context, mask)
- def cross_attention_attnblock_forward(self, x):
- h_ = x
- h_ = self.norm(h_)
- q1 = self.q(h_)
- k1 = self.k(h_)
- v = self.v(h_)
- # compute attention
- b, c, h, w = q1.shape
- q2 = q1.reshape(b, c, h*w)
- del q1
- q = q2.permute(0, 2, 1) # b,hw,c
- del q2
- k = k1.reshape(b, c, h*w) # b,c,hw
- del k1
- h_ = torch.zeros_like(k, device=q.device)
- mem_free_total = get_available_vram()
- tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
- mem_required = tensor_size * 2.5
- steps = 1
- if mem_required > mem_free_total:
- steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
- slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
- for i in range(0, q.shape[1], slice_size):
- end = i + slice_size
- w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
- w2 = w1 * (int(c)**(-0.5))
- del w1
- w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype)
- del w2
- # attend to values
- v1 = v.reshape(b, c, h*w)
- w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
- del w3
- h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
- del v1, w4
- h2 = h_.reshape(b, c, h, w)
- del h_
- h3 = self.proj_out(h2)
- del h2
- h3 += x
- return h3
- def xformers_attnblock_forward(self, x):
- try:
- h_ = x
- h_ = self.norm(h_)
- q = self.q(h_)
- k = self.k(h_)
- v = self.v(h_)
- b, c, h, w = q.shape
- q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v))
- dtype = q.dtype
- if shared.opts.upcast_attn:
- q, k = q.float(), k.float()
- q = q.contiguous()
- k = k.contiguous()
- v = v.contiguous()
- out = xformers.ops.memory_efficient_attention(q, k, v, op=get_xformers_flash_attention_op(q, k, v))
- out = out.to(dtype)
- out = rearrange(out, 'b (h w) c -> b c h w', h=h)
- out = self.proj_out(out)
- return x + out
- except NotImplementedError:
- return cross_attention_attnblock_forward(self, x)
- def sdp_attnblock_forward(self, x):
- h_ = x
- h_ = self.norm(h_)
- q = self.q(h_)
- k = self.k(h_)
- v = self.v(h_)
- b, c, h, w = q.shape
- q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v))
- dtype = q.dtype
- if shared.opts.upcast_attn:
- q, k, v = q.float(), k.float(), v.float()
- q = q.contiguous()
- k = k.contiguous()
- v = v.contiguous()
- out = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=False)
- out = out.to(dtype)
- out = rearrange(out, 'b (h w) c -> b c h w', h=h)
- out = self.proj_out(out)
- return x + out
- def sdp_no_mem_attnblock_forward(self, x):
- with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False):
- return sdp_attnblock_forward(self, x)
- def sub_quad_attnblock_forward(self, x):
- h_ = x
- h_ = self.norm(h_)
- q = self.q(h_)
- k = self.k(h_)
- v = self.v(h_)
- b, c, h, w = q.shape
- q, k, v = (rearrange(t, 'b c h w -> b (h w) c') for t in (q, k, v))
- q = q.contiguous()
- k = k.contiguous()
- v = v.contiguous()
- out = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)
- out = rearrange(out, 'b (h w) c -> b c h w', h=h)
- out = self.proj_out(out)
- return x + out
|