123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 |
- import ldm.modules.encoders.modules
- import open_clip
- import torch
- import transformers.utils.hub
- class DisableInitialization:
- """
- When an object of this class enters a `with` block, it starts:
- - preventing torch's layer initialization functions from working
- - changes CLIP and OpenCLIP to not download model weights
- - changes CLIP to not make requests to check if there is a new version of a file you already have
- When it leaves the block, it reverts everything to how it was before.
- Use it like this:
- ```
- with DisableInitialization():
- do_things()
- ```
- """
- def __init__(self, disable_clip=True):
- self.replaced = []
- self.disable_clip = disable_clip
- def replace(self, obj, field, func):
- original = getattr(obj, field, None)
- if original is None:
- return None
- self.replaced.append((obj, field, original))
- setattr(obj, field, func)
- return original
- def __enter__(self):
- def do_nothing(*args, **kwargs):
- pass
- def create_model_and_transforms_without_pretrained(*args, pretrained=None, **kwargs):
- return self.create_model_and_transforms(*args, pretrained=None, **kwargs)
- def CLIPTextModel_from_pretrained(pretrained_model_name_or_path, *model_args, **kwargs):
- res = self.CLIPTextModel_from_pretrained(None, *model_args, config=pretrained_model_name_or_path, state_dict={}, **kwargs)
- res.name_or_path = pretrained_model_name_or_path
- return res
- def transformers_modeling_utils_load_pretrained_model(*args, **kwargs):
- args = args[0:3] + ('/', ) + args[4:] # resolved_archive_file; must set it to something to prevent what seems to be a bug
- return self.transformers_modeling_utils_load_pretrained_model(*args, **kwargs)
- def transformers_utils_hub_get_file_from_cache(original, url, *args, **kwargs):
- # this file is always 404, prevent making request
- if url == 'https://huggingface.co/openai/clip-vit-large-patch14/resolve/main/added_tokens.json' or url == 'openai/clip-vit-large-patch14' and args[0] == 'added_tokens.json':
- return None
- try:
- res = original(url, *args, local_files_only=True, **kwargs)
- if res is None:
- res = original(url, *args, local_files_only=False, **kwargs)
- return res
- except Exception:
- return original(url, *args, local_files_only=False, **kwargs)
- def transformers_utils_hub_get_from_cache(url, *args, local_files_only=False, **kwargs):
- return transformers_utils_hub_get_file_from_cache(self.transformers_utils_hub_get_from_cache, url, *args, **kwargs)
- def transformers_tokenization_utils_base_cached_file(url, *args, local_files_only=False, **kwargs):
- return transformers_utils_hub_get_file_from_cache(self.transformers_tokenization_utils_base_cached_file, url, *args, **kwargs)
- def transformers_configuration_utils_cached_file(url, *args, local_files_only=False, **kwargs):
- return transformers_utils_hub_get_file_from_cache(self.transformers_configuration_utils_cached_file, url, *args, **kwargs)
- self.replace(torch.nn.init, 'kaiming_uniform_', do_nothing)
- self.replace(torch.nn.init, '_no_grad_normal_', do_nothing)
- self.replace(torch.nn.init, '_no_grad_uniform_', do_nothing)
- if self.disable_clip:
- self.create_model_and_transforms = self.replace(open_clip, 'create_model_and_transforms', create_model_and_transforms_without_pretrained)
- self.CLIPTextModel_from_pretrained = self.replace(ldm.modules.encoders.modules.CLIPTextModel, 'from_pretrained', CLIPTextModel_from_pretrained)
- self.transformers_modeling_utils_load_pretrained_model = self.replace(transformers.modeling_utils.PreTrainedModel, '_load_pretrained_model', transformers_modeling_utils_load_pretrained_model)
- self.transformers_tokenization_utils_base_cached_file = self.replace(transformers.tokenization_utils_base, 'cached_file', transformers_tokenization_utils_base_cached_file)
- self.transformers_configuration_utils_cached_file = self.replace(transformers.configuration_utils, 'cached_file', transformers_configuration_utils_cached_file)
- self.transformers_utils_hub_get_from_cache = self.replace(transformers.utils.hub, 'get_from_cache', transformers_utils_hub_get_from_cache)
- def __exit__(self, exc_type, exc_val, exc_tb):
- for obj, field, original in self.replaced:
- setattr(obj, field, original)
- self.replaced.clear()
|