123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439 |
- from __future__ import annotations
- import re
- from collections import namedtuple
- from typing import List
- import lark
- # a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
- # will be represented with prompt_schedule like this (assuming steps=100):
- # [25, 'fantasy landscape with a mountain and an oak in foreground shoddy']
- # [50, 'fantasy landscape with a lake and an oak in foreground in background shoddy']
- # [60, 'fantasy landscape with a lake and an oak in foreground in background masterful']
- # [75, 'fantasy landscape with a lake and an oak in background masterful']
- # [100, 'fantasy landscape with a lake and a christmas tree in background masterful']
- schedule_parser = lark.Lark(r"""
- !start: (prompt | /[][():]/+)*
- prompt: (emphasized | scheduled | alternate | plain | WHITESPACE)*
- !emphasized: "(" prompt ")"
- | "(" prompt ":" prompt ")"
- | "[" prompt "]"
- scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER "]"
- alternate: "[" prompt ("|" prompt)+ "]"
- WHITESPACE: /\s+/
- plain: /([^\\\[\]():|]|\\.)+/
- %import common.SIGNED_NUMBER -> NUMBER
- """)
- def get_learned_conditioning_prompt_schedules(prompts, steps):
- """
- >>> g = lambda p: get_learned_conditioning_prompt_schedules([p], 10)[0]
- >>> g("test")
- [[10, 'test']]
- >>> g("a [b:3]")
- [[3, 'a '], [10, 'a b']]
- >>> g("a [b: 3]")
- [[3, 'a '], [10, 'a b']]
- >>> g("a [[[b]]:2]")
- [[2, 'a '], [10, 'a [[b]]']]
- >>> g("[(a:2):3]")
- [[3, ''], [10, '(a:2)']]
- >>> g("a [b : c : 1] d")
- [[1, 'a b d'], [10, 'a c d']]
- >>> g("a[b:[c:d:2]:1]e")
- [[1, 'abe'], [2, 'ace'], [10, 'ade']]
- >>> g("a [unbalanced")
- [[10, 'a [unbalanced']]
- >>> g("a [b:.5] c")
- [[5, 'a c'], [10, 'a b c']]
- >>> g("a [{b|d{:.5] c") # not handling this right now
- [[5, 'a c'], [10, 'a {b|d{ c']]
- >>> g("((a][:b:c [d:3]")
- [[3, '((a][:b:c '], [10, '((a][:b:c d']]
- >>> g("[a|(b:1.1)]")
- [[1, 'a'], [2, '(b:1.1)'], [3, 'a'], [4, '(b:1.1)'], [5, 'a'], [6, '(b:1.1)'], [7, 'a'], [8, '(b:1.1)'], [9, 'a'], [10, '(b:1.1)']]
- """
- def collect_steps(steps, tree):
- res = [steps]
- class CollectSteps(lark.Visitor):
- def scheduled(self, tree):
- tree.children[-1] = float(tree.children[-1])
- if tree.children[-1] < 1:
- tree.children[-1] *= steps
- tree.children[-1] = min(steps, int(tree.children[-1]))
- res.append(tree.children[-1])
- def alternate(self, tree):
- res.extend(range(1, steps+1))
- CollectSteps().visit(tree)
- return sorted(set(res))
- def at_step(step, tree):
- class AtStep(lark.Transformer):
- def scheduled(self, args):
- before, after, _, when = args
- yield before or () if step <= when else after
- def alternate(self, args):
- yield next(args[(step - 1)%len(args)])
- def start(self, args):
- def flatten(x):
- if type(x) == str:
- yield x
- else:
- for gen in x:
- yield from flatten(gen)
- return ''.join(flatten(args))
- def plain(self, args):
- yield args[0].value
- def __default__(self, data, children, meta):
- for child in children:
- yield child
- return AtStep().transform(tree)
- def get_schedule(prompt):
- try:
- tree = schedule_parser.parse(prompt)
- except lark.exceptions.LarkError:
- if 0:
- import traceback
- traceback.print_exc()
- return [[steps, prompt]]
- return [[t, at_step(t, tree)] for t in collect_steps(steps, tree)]
- promptdict = {prompt: get_schedule(prompt) for prompt in set(prompts)}
- return [promptdict[prompt] for prompt in prompts]
- ScheduledPromptConditioning = namedtuple("ScheduledPromptConditioning", ["end_at_step", "cond"])
- class SdConditioning(list):
- """
- A list with prompts for stable diffusion's conditioner model.
- Can also specify width and height of created image - SDXL needs it.
- """
- def __init__(self, prompts, is_negative_prompt=False, width=None, height=None, copy_from=None):
- super().__init__()
- self.extend(prompts)
- if copy_from is None:
- copy_from = prompts
- self.is_negative_prompt = is_negative_prompt or getattr(copy_from, 'is_negative_prompt', False)
- self.width = width or getattr(copy_from, 'width', None)
- self.height = height or getattr(copy_from, 'height', None)
- def get_learned_conditioning(model, prompts: SdConditioning | list[str], steps):
- """converts a list of prompts into a list of prompt schedules - each schedule is a list of ScheduledPromptConditioning, specifying the comdition (cond),
- and the sampling step at which this condition is to be replaced by the next one.
- Input:
- (model, ['a red crown', 'a [blue:green:5] jeweled crown'], 20)
- Output:
- [
- [
- ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0523, ..., -0.4901, -0.3066, 0.0674], ..., [ 0.3317, -0.5102, -0.4066, ..., 0.4119, -0.7647, -1.0160]], device='cuda:0'))
- ],
- [
- ScheduledPromptConditioning(end_at_step=5, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.0192, 0.3867, -0.4644, ..., 0.1135, -0.3696, -0.4625]], device='cuda:0')),
- ScheduledPromptConditioning(end_at_step=20, cond=tensor([[-0.3886, 0.0229, -0.0522, ..., -0.4901, -0.3067, 0.0673], ..., [-0.7352, -0.4356, -0.7888, ..., 0.6994, -0.4312, -1.2593]], device='cuda:0'))
- ]
- ]
- """
- res = []
- prompt_schedules = get_learned_conditioning_prompt_schedules(prompts, steps)
- cache = {}
- for prompt, prompt_schedule in zip(prompts, prompt_schedules):
- cached = cache.get(prompt, None)
- if cached is not None:
- res.append(cached)
- continue
- texts = SdConditioning([x[1] for x in prompt_schedule], copy_from=prompts)
- conds = model.get_learned_conditioning(texts)
- cond_schedule = []
- for i, (end_at_step, _) in enumerate(prompt_schedule):
- if isinstance(conds, dict):
- cond = {k: v[i] for k, v in conds.items()}
- else:
- cond = conds[i]
- cond_schedule.append(ScheduledPromptConditioning(end_at_step, cond))
- cache[prompt] = cond_schedule
- res.append(cond_schedule)
- return res
- re_AND = re.compile(r"\bAND\b")
- re_weight = re.compile(r"^((?:\s|.)*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")
- def get_multicond_prompt_list(prompts: SdConditioning | list[str]):
- res_indexes = []
- prompt_indexes = {}
- prompt_flat_list = SdConditioning(prompts)
- prompt_flat_list.clear()
- for prompt in prompts:
- subprompts = re_AND.split(prompt)
- indexes = []
- for subprompt in subprompts:
- match = re_weight.search(subprompt)
- text, weight = match.groups() if match is not None else (subprompt, 1.0)
- weight = float(weight) if weight is not None else 1.0
- index = prompt_indexes.get(text, None)
- if index is None:
- index = len(prompt_flat_list)
- prompt_flat_list.append(text)
- prompt_indexes[text] = index
- indexes.append((index, weight))
- res_indexes.append(indexes)
- return res_indexes, prompt_flat_list, prompt_indexes
- class ComposableScheduledPromptConditioning:
- def __init__(self, schedules, weight=1.0):
- self.schedules: List[ScheduledPromptConditioning] = schedules
- self.weight: float = weight
- class MulticondLearnedConditioning:
- def __init__(self, shape, batch):
- self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
- self.batch: List[List[ComposableScheduledPromptConditioning]] = batch
- def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
- """same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
- For each prompt, the list is obtained by splitting the prompt using the AND separator.
- https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/
- """
- res_indexes, prompt_flat_list, prompt_indexes = get_multicond_prompt_list(prompts)
- learned_conditioning = get_learned_conditioning(model, prompt_flat_list, steps)
- res = []
- for indexes in res_indexes:
- res.append([ComposableScheduledPromptConditioning(learned_conditioning[i], weight) for i, weight in indexes])
- return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
- class DictWithShape(dict):
- def __init__(self, x, shape):
- super().__init__()
- self.update(x)
- @property
- def shape(self):
- return self["crossattn"].shape
- def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step):
- param = c[0][0].cond
- is_dict = isinstance(param, dict)
- if is_dict:
- dict_cond = param
- res = {k: torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype) for k, param in dict_cond.items()}
- res = DictWithShape(res, (len(c),) + dict_cond['crossattn'].shape)
- else:
- res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
- for i, cond_schedule in enumerate(c):
- target_index = 0
- for current, entry in enumerate(cond_schedule):
- if current_step <= entry.end_at_step:
- target_index = current
- break
- if is_dict:
- for k, param in cond_schedule[target_index].cond.items():
- res[k][i] = param
- else:
- res[i] = cond_schedule[target_index].cond
- return res
- def stack_conds(tensors):
- # if prompts have wildly different lengths above the limit we'll get tensors of different shapes
- # and won't be able to torch.stack them. So this fixes that.
- token_count = max([x.shape[0] for x in tensors])
- for i in range(len(tensors)):
- if tensors[i].shape[0] != token_count:
- last_vector = tensors[i][-1:]
- last_vector_repeated = last_vector.repeat([token_count - tensors[i].shape[0], 1])
- tensors[i] = torch.vstack([tensors[i], last_vector_repeated])
- return torch.stack(tensors)
- def reconstruct_multicond_batch(c: MulticondLearnedConditioning, current_step):
- param = c.batch[0][0].schedules[0].cond
- tensors = []
- conds_list = []
- for composable_prompts in c.batch:
- conds_for_batch = []
- for composable_prompt in composable_prompts:
- target_index = 0
- for current, entry in enumerate(composable_prompt.schedules):
- if current_step <= entry.end_at_step:
- target_index = current
- break
- conds_for_batch.append((len(tensors), composable_prompt.weight))
- tensors.append(composable_prompt.schedules[target_index].cond)
- conds_list.append(conds_for_batch)
- if isinstance(tensors[0], dict):
- keys = list(tensors[0].keys())
- stacked = {k: stack_conds([x[k] for x in tensors]) for k in keys}
- stacked = DictWithShape(stacked, stacked['crossattn'].shape)
- else:
- stacked = stack_conds(tensors).to(device=param.device, dtype=param.dtype)
- return conds_list, stacked
- re_attention = re.compile(r"""
- \\\(|
- \\\)|
- \\\[|
- \\]|
- \\\\|
- \\|
- \(|
- \[|
- :([+-]?[.\d]+)\)|
- \)|
- ]|
- [^\\()\[\]:]+|
- :
- """, re.X)
- re_break = re.compile(r"\s*\bBREAK\b\s*", re.S)
- def parse_prompt_attention(text):
- """
- Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
- Accepted tokens are:
- (abc) - increases attention to abc by a multiplier of 1.1
- (abc:3.12) - increases attention to abc by a multiplier of 3.12
- [abc] - decreases attention to abc by a multiplier of 1.1
- \( - literal character '('
- \[ - literal character '['
- \) - literal character ')'
- \] - literal character ']'
- \\ - literal character '\'
- anything else - just text
- >>> parse_prompt_attention('normal text')
- [['normal text', 1.0]]
- >>> parse_prompt_attention('an (important) word')
- [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
- >>> parse_prompt_attention('(unbalanced')
- [['unbalanced', 1.1]]
- >>> parse_prompt_attention('\(literal\]')
- [['(literal]', 1.0]]
- >>> parse_prompt_attention('(unnecessary)(parens)')
- [['unnecessaryparens', 1.1]]
- >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
- [['a ', 1.0],
- ['house', 1.5730000000000004],
- [' ', 1.1],
- ['on', 1.0],
- [' a ', 1.1],
- ['hill', 0.55],
- [', sun, ', 1.1],
- ['sky', 1.4641000000000006],
- ['.', 1.1]]
- """
- res = []
- round_brackets = []
- square_brackets = []
- round_bracket_multiplier = 1.1
- square_bracket_multiplier = 1 / 1.1
- def multiply_range(start_position, multiplier):
- for p in range(start_position, len(res)):
- res[p][1] *= multiplier
- for m in re_attention.finditer(text):
- text = m.group(0)
- weight = m.group(1)
- if text.startswith('\\'):
- res.append([text[1:], 1.0])
- elif text == '(':
- round_brackets.append(len(res))
- elif text == '[':
- square_brackets.append(len(res))
- elif weight is not None and round_brackets:
- multiply_range(round_brackets.pop(), float(weight))
- elif text == ')' and round_brackets:
- multiply_range(round_brackets.pop(), round_bracket_multiplier)
- elif text == ']' and square_brackets:
- multiply_range(square_brackets.pop(), square_bracket_multiplier)
- else:
- parts = re.split(re_break, text)
- for i, part in enumerate(parts):
- if i > 0:
- res.append(["BREAK", -1])
- res.append([part, 1.0])
- for pos in round_brackets:
- multiply_range(pos, round_bracket_multiplier)
- for pos in square_brackets:
- multiply_range(pos, square_bracket_multiplier)
- if len(res) == 0:
- res = [["", 1.0]]
- # merge runs of identical weights
- i = 0
- while i + 1 < len(res):
- if res[i][1] == res[i + 1][1]:
- res[i][0] += res[i + 1][0]
- res.pop(i + 1)
- else:
- i += 1
- return res
- if __name__ == "__main__":
- import doctest
- doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)
- else:
- import torch # doctest faster
|