processing.py 63 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392
  1. import json
  2. import logging
  3. import math
  4. import os
  5. import sys
  6. import hashlib
  7. import torch
  8. import numpy as np
  9. from PIL import Image, ImageOps
  10. import random
  11. import cv2
  12. from skimage import exposure
  13. from typing import Any, Dict, List
  14. import modules.sd_hijack
  15. from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors
  16. from modules.sd_hijack import model_hijack
  17. from modules.shared import opts, cmd_opts, state
  18. import modules.shared as shared
  19. import modules.paths as paths
  20. import modules.face_restoration
  21. import modules.images as images
  22. import modules.styles
  23. import modules.sd_models as sd_models
  24. import modules.sd_vae as sd_vae
  25. from ldm.data.util import AddMiDaS
  26. from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
  27. from einops import repeat, rearrange
  28. from blendmodes.blend import blendLayers, BlendType
  29. # some of those options should not be changed at all because they would break the model, so I removed them from options.
  30. opt_C = 4
  31. opt_f = 8
  32. def setup_color_correction(image):
  33. logging.info("Calibrating color correction.")
  34. correction_target = cv2.cvtColor(np.asarray(image.copy()), cv2.COLOR_RGB2LAB)
  35. return correction_target
  36. def apply_color_correction(correction, original_image):
  37. logging.info("Applying color correction.")
  38. image = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
  39. cv2.cvtColor(
  40. np.asarray(original_image),
  41. cv2.COLOR_RGB2LAB
  42. ),
  43. correction,
  44. channel_axis=2
  45. ), cv2.COLOR_LAB2RGB).astype("uint8"))
  46. image = blendLayers(image, original_image, BlendType.LUMINOSITY)
  47. return image
  48. def apply_overlay(image, paste_loc, index, overlays):
  49. if overlays is None or index >= len(overlays):
  50. return image
  51. overlay = overlays[index]
  52. if paste_loc is not None:
  53. x, y, w, h = paste_loc
  54. base_image = Image.new('RGBA', (overlay.width, overlay.height))
  55. image = images.resize_image(1, image, w, h)
  56. base_image.paste(image, (x, y))
  57. image = base_image
  58. image = image.convert('RGBA')
  59. image.alpha_composite(overlay)
  60. image = image.convert('RGB')
  61. return image
  62. def txt2img_image_conditioning(sd_model, x, width, height):
  63. if sd_model.model.conditioning_key in {'hybrid', 'concat'}: # Inpainting models
  64. # The "masked-image" in this case will just be all zeros since the entire image is masked.
  65. image_conditioning = torch.zeros(x.shape[0], 3, height, width, device=x.device)
  66. image_conditioning = sd_model.get_first_stage_encoding(sd_model.encode_first_stage(image_conditioning))
  67. # Add the fake full 1s mask to the first dimension.
  68. image_conditioning = torch.nn.functional.pad(image_conditioning, (0, 0, 0, 0, 1, 0), value=1.0)
  69. image_conditioning = image_conditioning.to(x.dtype)
  70. return image_conditioning
  71. elif sd_model.model.conditioning_key == "crossattn-adm": # UnCLIP models
  72. return x.new_zeros(x.shape[0], 2*sd_model.noise_augmentor.time_embed.dim, dtype=x.dtype, device=x.device)
  73. else:
  74. # Dummy zero conditioning if we're not using inpainting or unclip models.
  75. # Still takes up a bit of memory, but no encoder call.
  76. # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size.
  77. return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device)
  78. class StableDiffusionProcessing:
  79. """
  80. The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
  81. """
  82. cached_uc = [None, None]
  83. cached_c = [None, None]
  84. def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None):
  85. if sampler_index is not None:
  86. print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr)
  87. self.outpath_samples: str = outpath_samples
  88. self.outpath_grids: str = outpath_grids
  89. self.prompt: str = prompt
  90. self.prompt_for_display: str = None
  91. self.negative_prompt: str = (negative_prompt or "")
  92. self.styles: list = styles or []
  93. self.seed: int = seed
  94. self.subseed: int = subseed
  95. self.subseed_strength: float = subseed_strength
  96. self.seed_resize_from_h: int = seed_resize_from_h
  97. self.seed_resize_from_w: int = seed_resize_from_w
  98. self.sampler_name: str = sampler_name
  99. self.batch_size: int = batch_size
  100. self.n_iter: int = n_iter
  101. self.steps: int = steps
  102. self.cfg_scale: float = cfg_scale
  103. self.width: int = width
  104. self.height: int = height
  105. self.restore_faces: bool = restore_faces
  106. self.tiling: bool = tiling
  107. self.do_not_save_samples: bool = do_not_save_samples
  108. self.do_not_save_grid: bool = do_not_save_grid
  109. self.extra_generation_params: dict = extra_generation_params or {}
  110. self.overlay_images = overlay_images
  111. self.eta = eta
  112. self.do_not_reload_embeddings = do_not_reload_embeddings
  113. self.paste_to = None
  114. self.color_corrections = None
  115. self.denoising_strength: float = denoising_strength
  116. self.sampler_noise_scheduler_override = None
  117. self.ddim_discretize = ddim_discretize or opts.ddim_discretize
  118. self.s_min_uncond = s_min_uncond or opts.s_min_uncond
  119. self.s_churn = s_churn or opts.s_churn
  120. self.s_tmin = s_tmin or opts.s_tmin
  121. self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
  122. self.s_noise = s_noise or opts.s_noise
  123. self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts}
  124. self.override_settings_restore_afterwards = override_settings_restore_afterwards
  125. self.is_using_inpainting_conditioning = False
  126. self.disable_extra_networks = False
  127. self.token_merging_ratio = 0
  128. self.token_merging_ratio_hr = 0
  129. if not seed_enable_extras:
  130. self.subseed = -1
  131. self.subseed_strength = 0
  132. self.seed_resize_from_h = 0
  133. self.seed_resize_from_w = 0
  134. self.scripts = None
  135. self.script_args = script_args
  136. self.all_prompts = None
  137. self.all_negative_prompts = None
  138. self.all_seeds = None
  139. self.all_subseeds = None
  140. self.iteration = 0
  141. self.is_hr_pass = False
  142. self.sampler = None
  143. self.prompts = None
  144. self.negative_prompts = None
  145. self.extra_network_data = None
  146. self.seeds = None
  147. self.subseeds = None
  148. self.step_multiplier = 1
  149. self.cached_uc = StableDiffusionProcessing.cached_uc
  150. self.cached_c = StableDiffusionProcessing.cached_c
  151. self.uc = None
  152. self.c = None
  153. self.user = None
  154. @property
  155. def sd_model(self):
  156. return shared.sd_model
  157. def txt2img_image_conditioning(self, x, width=None, height=None):
  158. self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'}
  159. return txt2img_image_conditioning(self.sd_model, x, width or self.width, height or self.height)
  160. def depth2img_image_conditioning(self, source_image):
  161. # Use the AddMiDaS helper to Format our source image to suit the MiDaS model
  162. transformer = AddMiDaS(model_type="dpt_hybrid")
  163. transformed = transformer({"jpg": rearrange(source_image[0], "c h w -> h w c")})
  164. midas_in = torch.from_numpy(transformed["midas_in"][None, ...]).to(device=shared.device)
  165. midas_in = repeat(midas_in, "1 ... -> n ...", n=self.batch_size)
  166. conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
  167. conditioning = torch.nn.functional.interpolate(
  168. self.sd_model.depth_model(midas_in),
  169. size=conditioning_image.shape[2:],
  170. mode="bicubic",
  171. align_corners=False,
  172. )
  173. (depth_min, depth_max) = torch.aminmax(conditioning)
  174. conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
  175. return conditioning
  176. def edit_image_conditioning(self, source_image):
  177. conditioning_image = self.sd_model.encode_first_stage(source_image).mode()
  178. return conditioning_image
  179. def unclip_image_conditioning(self, source_image):
  180. c_adm = self.sd_model.embedder(source_image)
  181. if self.sd_model.noise_augmentor is not None:
  182. noise_level = 0 # TODO: Allow other noise levels?
  183. c_adm, noise_level_emb = self.sd_model.noise_augmentor(c_adm, noise_level=repeat(torch.tensor([noise_level]).to(c_adm.device), '1 -> b', b=c_adm.shape[0]))
  184. c_adm = torch.cat((c_adm, noise_level_emb), 1)
  185. return c_adm
  186. def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None):
  187. self.is_using_inpainting_conditioning = True
  188. # Handle the different mask inputs
  189. if image_mask is not None:
  190. if torch.is_tensor(image_mask):
  191. conditioning_mask = image_mask
  192. else:
  193. conditioning_mask = np.array(image_mask.convert("L"))
  194. conditioning_mask = conditioning_mask.astype(np.float32) / 255.0
  195. conditioning_mask = torch.from_numpy(conditioning_mask[None, None])
  196. # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0
  197. conditioning_mask = torch.round(conditioning_mask)
  198. else:
  199. conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:])
  200. # Create another latent image, this time with a masked version of the original input.
  201. # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
  202. conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
  203. conditioning_image = torch.lerp(
  204. source_image,
  205. source_image * (1.0 - conditioning_mask),
  206. getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight)
  207. )
  208. # Encode the new masked image using first stage of network.
  209. conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(conditioning_image))
  210. # Create the concatenated conditioning tensor to be fed to `c_concat`
  211. conditioning_mask = torch.nn.functional.interpolate(conditioning_mask, size=latent_image.shape[-2:])
  212. conditioning_mask = conditioning_mask.expand(conditioning_image.shape[0], -1, -1, -1)
  213. image_conditioning = torch.cat([conditioning_mask, conditioning_image], dim=1)
  214. image_conditioning = image_conditioning.to(shared.device).type(self.sd_model.dtype)
  215. return image_conditioning
  216. def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
  217. source_image = devices.cond_cast_float(source_image)
  218. # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
  219. # identify itself with a field common to all models. The conditioning_key is also hybrid.
  220. if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
  221. return self.depth2img_image_conditioning(source_image)
  222. if self.sd_model.cond_stage_key == "edit":
  223. return self.edit_image_conditioning(source_image)
  224. if self.sampler.conditioning_key in {'hybrid', 'concat'}:
  225. return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
  226. if self.sampler.conditioning_key == "crossattn-adm":
  227. return self.unclip_image_conditioning(source_image)
  228. # Dummy zero conditioning if we're not using inpainting or depth model.
  229. return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1)
  230. def init(self, all_prompts, all_seeds, all_subseeds):
  231. pass
  232. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  233. raise NotImplementedError()
  234. def close(self):
  235. self.sampler = None
  236. self.c = None
  237. self.uc = None
  238. if not opts.experimental_persistent_cond_cache:
  239. StableDiffusionProcessing.cached_c = [None, None]
  240. StableDiffusionProcessing.cached_uc = [None, None]
  241. def get_token_merging_ratio(self, for_hr=False):
  242. if for_hr:
  243. return self.token_merging_ratio_hr or opts.token_merging_ratio_hr or self.token_merging_ratio or opts.token_merging_ratio
  244. return self.token_merging_ratio or opts.token_merging_ratio
  245. def setup_prompts(self):
  246. if type(self.prompt) == list:
  247. self.all_prompts = self.prompt
  248. else:
  249. self.all_prompts = self.batch_size * self.n_iter * [self.prompt]
  250. if type(self.negative_prompt) == list:
  251. self.all_negative_prompts = self.negative_prompt
  252. else:
  253. self.all_negative_prompts = self.batch_size * self.n_iter * [self.negative_prompt]
  254. self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts]
  255. self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts]
  256. def get_conds_with_caching(self, function, required_prompts, steps, caches, extra_network_data):
  257. """
  258. Returns the result of calling function(shared.sd_model, required_prompts, steps)
  259. using a cache to store the result if the same arguments have been used before.
  260. cache is an array containing two elements. The first element is a tuple
  261. representing the previously used arguments, or None if no arguments
  262. have been used before. The second element is where the previously
  263. computed result is stored.
  264. caches is a list with items described above.
  265. """
  266. cached_params = (
  267. required_prompts,
  268. steps,
  269. opts.CLIP_stop_at_last_layers,
  270. shared.sd_model.sd_checkpoint_info,
  271. extra_network_data,
  272. opts.sdxl_crop_left,
  273. opts.sdxl_crop_top,
  274. self.width,
  275. self.height,
  276. )
  277. for cache in caches:
  278. if cache[0] is not None and cached_params == cache[0]:
  279. return cache[1]
  280. cache = caches[0]
  281. with devices.autocast():
  282. cache[1] = function(shared.sd_model, required_prompts, steps)
  283. cache[0] = cached_params
  284. return cache[1]
  285. def setup_conds(self):
  286. prompts = prompt_parser.SdConditioning(self.prompts, width=self.width, height=self.height)
  287. negative_prompts = prompt_parser.SdConditioning(self.negative_prompts, width=self.width, height=self.height, is_negative_prompt=True)
  288. sampler_config = sd_samplers.find_sampler_config(self.sampler_name)
  289. self.step_multiplier = 2 if sampler_config and sampler_config.options.get("second_order", False) else 1
  290. self.uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, negative_prompts, self.steps * self.step_multiplier, [self.cached_uc], self.extra_network_data)
  291. self.c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, prompts, self.steps * self.step_multiplier, [self.cached_c], self.extra_network_data)
  292. def parse_extra_network_prompts(self):
  293. self.prompts, self.extra_network_data = extra_networks.parse_prompts(self.prompts)
  294. class Processed:
  295. def __init__(self, p: StableDiffusionProcessing, images_list, seed=-1, info="", subseed=None, all_prompts=None, all_negative_prompts=None, all_seeds=None, all_subseeds=None, index_of_first_image=0, infotexts=None, comments=""):
  296. self.images = images_list
  297. self.prompt = p.prompt
  298. self.negative_prompt = p.negative_prompt
  299. self.seed = seed
  300. self.subseed = subseed
  301. self.subseed_strength = p.subseed_strength
  302. self.info = info
  303. self.comments = comments
  304. self.width = p.width
  305. self.height = p.height
  306. self.sampler_name = p.sampler_name
  307. self.cfg_scale = p.cfg_scale
  308. self.image_cfg_scale = getattr(p, 'image_cfg_scale', None)
  309. self.steps = p.steps
  310. self.batch_size = p.batch_size
  311. self.restore_faces = p.restore_faces
  312. self.face_restoration_model = opts.face_restoration_model if p.restore_faces else None
  313. self.sd_model_hash = shared.sd_model.sd_model_hash
  314. self.seed_resize_from_w = p.seed_resize_from_w
  315. self.seed_resize_from_h = p.seed_resize_from_h
  316. self.denoising_strength = getattr(p, 'denoising_strength', None)
  317. self.extra_generation_params = p.extra_generation_params
  318. self.index_of_first_image = index_of_first_image
  319. self.styles = p.styles
  320. self.job_timestamp = state.job_timestamp
  321. self.clip_skip = opts.CLIP_stop_at_last_layers
  322. self.token_merging_ratio = p.token_merging_ratio
  323. self.token_merging_ratio_hr = p.token_merging_ratio_hr
  324. self.eta = p.eta
  325. self.ddim_discretize = p.ddim_discretize
  326. self.s_churn = p.s_churn
  327. self.s_tmin = p.s_tmin
  328. self.s_tmax = p.s_tmax
  329. self.s_noise = p.s_noise
  330. self.s_min_uncond = p.s_min_uncond
  331. self.sampler_noise_scheduler_override = p.sampler_noise_scheduler_override
  332. self.prompt = self.prompt if type(self.prompt) != list else self.prompt[0]
  333. self.negative_prompt = self.negative_prompt if type(self.negative_prompt) != list else self.negative_prompt[0]
  334. self.seed = int(self.seed if type(self.seed) != list else self.seed[0]) if self.seed is not None else -1
  335. self.subseed = int(self.subseed if type(self.subseed) != list else self.subseed[0]) if self.subseed is not None else -1
  336. self.is_using_inpainting_conditioning = p.is_using_inpainting_conditioning
  337. self.all_prompts = all_prompts or p.all_prompts or [self.prompt]
  338. self.all_negative_prompts = all_negative_prompts or p.all_negative_prompts or [self.negative_prompt]
  339. self.all_seeds = all_seeds or p.all_seeds or [self.seed]
  340. self.all_subseeds = all_subseeds or p.all_subseeds or [self.subseed]
  341. self.infotexts = infotexts or [info]
  342. def js(self):
  343. obj = {
  344. "prompt": self.all_prompts[0],
  345. "all_prompts": self.all_prompts,
  346. "negative_prompt": self.all_negative_prompts[0],
  347. "all_negative_prompts": self.all_negative_prompts,
  348. "seed": self.seed,
  349. "all_seeds": self.all_seeds,
  350. "subseed": self.subseed,
  351. "all_subseeds": self.all_subseeds,
  352. "subseed_strength": self.subseed_strength,
  353. "width": self.width,
  354. "height": self.height,
  355. "sampler_name": self.sampler_name,
  356. "cfg_scale": self.cfg_scale,
  357. "steps": self.steps,
  358. "batch_size": self.batch_size,
  359. "restore_faces": self.restore_faces,
  360. "face_restoration_model": self.face_restoration_model,
  361. "sd_model_hash": self.sd_model_hash,
  362. "seed_resize_from_w": self.seed_resize_from_w,
  363. "seed_resize_from_h": self.seed_resize_from_h,
  364. "denoising_strength": self.denoising_strength,
  365. "extra_generation_params": self.extra_generation_params,
  366. "index_of_first_image": self.index_of_first_image,
  367. "infotexts": self.infotexts,
  368. "styles": self.styles,
  369. "job_timestamp": self.job_timestamp,
  370. "clip_skip": self.clip_skip,
  371. "is_using_inpainting_conditioning": self.is_using_inpainting_conditioning,
  372. }
  373. return json.dumps(obj)
  374. def infotext(self, p: StableDiffusionProcessing, index):
  375. return create_infotext(p, self.all_prompts, self.all_seeds, self.all_subseeds, comments=[], position_in_batch=index % self.batch_size, iteration=index // self.batch_size)
  376. def get_token_merging_ratio(self, for_hr=False):
  377. return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio
  378. # from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3
  379. def slerp(val, low, high):
  380. low_norm = low/torch.norm(low, dim=1, keepdim=True)
  381. high_norm = high/torch.norm(high, dim=1, keepdim=True)
  382. dot = (low_norm*high_norm).sum(1)
  383. if dot.mean() > 0.9995:
  384. return low * val + high * (1 - val)
  385. omega = torch.acos(dot)
  386. so = torch.sin(omega)
  387. res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
  388. return res
  389. def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None):
  390. eta_noise_seed_delta = opts.eta_noise_seed_delta or 0
  391. xs = []
  392. # if we have multiple seeds, this means we are working with batch size>1; this then
  393. # enables the generation of additional tensors with noise that the sampler will use during its processing.
  394. # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to
  395. # produce the same images as with two batches [100], [101].
  396. if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0):
  397. sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))]
  398. else:
  399. sampler_noises = None
  400. for i, seed in enumerate(seeds):
  401. noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
  402. subnoise = None
  403. if subseeds is not None:
  404. subseed = 0 if i >= len(subseeds) else subseeds[i]
  405. subnoise = devices.randn(subseed, noise_shape)
  406. # randn results depend on device; gpu and cpu get different results for same seed;
  407. # the way I see it, it's better to do this on CPU, so that everyone gets same result;
  408. # but the original script had it like this, so I do not dare change it for now because
  409. # it will break everyone's seeds.
  410. noise = devices.randn(seed, noise_shape)
  411. if subnoise is not None:
  412. noise = slerp(subseed_strength, noise, subnoise)
  413. if noise_shape != shape:
  414. x = devices.randn(seed, shape)
  415. dx = (shape[2] - noise_shape[2]) // 2
  416. dy = (shape[1] - noise_shape[1]) // 2
  417. w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx
  418. h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy
  419. tx = 0 if dx < 0 else dx
  420. ty = 0 if dy < 0 else dy
  421. dx = max(-dx, 0)
  422. dy = max(-dy, 0)
  423. x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w]
  424. noise = x
  425. if sampler_noises is not None:
  426. cnt = p.sampler.number_of_needed_noises(p)
  427. if eta_noise_seed_delta > 0:
  428. torch.manual_seed(seed + eta_noise_seed_delta)
  429. for j in range(cnt):
  430. sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
  431. xs.append(noise)
  432. if sampler_noises is not None:
  433. p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises]
  434. x = torch.stack(xs).to(shared.device)
  435. return x
  436. def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
  437. samples = []
  438. for i in range(batch.shape[0]):
  439. sample = decode_first_stage(model, batch[i:i + 1])[0]
  440. if check_for_nans:
  441. try:
  442. devices.test_for_nans(sample, "vae")
  443. except devices.NansException as e:
  444. if devices.dtype_vae == torch.float32 or not shared.opts.auto_vae_precision:
  445. raise e
  446. errors.print_error_explanation(
  447. "A tensor with all NaNs was produced in VAE.\n"
  448. "Web UI will now convert VAE into 32-bit float and retry.\n"
  449. "To disable this behavior, disable the 'Automaticlly revert VAE to 32-bit floats' setting.\n"
  450. "To always start with 32-bit VAE, use --no-half-vae commandline flag."
  451. )
  452. devices.dtype_vae = torch.float32
  453. model.first_stage_model.to(devices.dtype_vae)
  454. batch = batch.to(devices.dtype_vae)
  455. sample = decode_first_stage(model, batch[i:i + 1])[0]
  456. if target_device is not None:
  457. sample = sample.to(target_device)
  458. samples.append(sample)
  459. return samples
  460. def decode_first_stage(model, x):
  461. x = model.decode_first_stage(x.to(devices.dtype_vae))
  462. return x
  463. def get_fixed_seed(seed):
  464. if seed is None or seed == '' or seed == -1:
  465. return int(random.randrange(4294967294))
  466. return seed
  467. def fix_seed(p):
  468. p.seed = get_fixed_seed(p.seed)
  469. p.subseed = get_fixed_seed(p.subseed)
  470. def program_version():
  471. import launch
  472. res = launch.git_tag()
  473. if res == "<none>":
  474. res = None
  475. return res
  476. def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None):
  477. if index is None:
  478. index = position_in_batch + iteration * p.batch_size
  479. if all_negative_prompts is None:
  480. all_negative_prompts = p.all_negative_prompts
  481. clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
  482. enable_hr = getattr(p, 'enable_hr', False)
  483. token_merging_ratio = p.get_token_merging_ratio()
  484. token_merging_ratio_hr = p.get_token_merging_ratio(for_hr=True)
  485. uses_ensd = opts.eta_noise_seed_delta != 0
  486. if uses_ensd:
  487. uses_ensd = sd_samplers_common.is_sampler_using_eta_noise_seed_delta(p)
  488. generation_params = {
  489. "Steps": p.steps,
  490. "Sampler": p.sampler_name,
  491. "CFG scale": p.cfg_scale,
  492. "Image CFG scale": getattr(p, 'image_cfg_scale', None),
  493. "Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
  494. "Face restoration": (opts.face_restoration_model if p.restore_faces else None),
  495. "Size": f"{p.width}x{p.height}",
  496. "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
  497. "Model": (None if not opts.add_model_name_to_info else shared.sd_model.sd_checkpoint_info.name_for_extra),
  498. "Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])),
  499. "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
  500. "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
  501. "Denoising strength": getattr(p, 'denoising_strength', None),
  502. "Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
  503. "Clip skip": None if clip_skip <= 1 else clip_skip,
  504. "ENSD": opts.eta_noise_seed_delta if uses_ensd else None,
  505. "Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
  506. "Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
  507. "Init image hash": getattr(p, 'init_img_hash', None),
  508. "RNG": opts.randn_source if opts.randn_source != "GPU" else None,
  509. "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
  510. **p.extra_generation_params,
  511. "Version": program_version() if opts.add_version_to_infotext else None,
  512. "User": p.user if opts.add_user_name_to_info else None,
  513. }
  514. generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
  515. prompt_text = p.prompt if use_main_prompt else all_prompts[index]
  516. negative_prompt_text = f"\nNegative prompt: {all_negative_prompts[index]}" if all_negative_prompts[index] else ""
  517. return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
  518. def process_images(p: StableDiffusionProcessing) -> Processed:
  519. if p.scripts is not None:
  520. p.scripts.before_process(p)
  521. stored_opts = {k: opts.data[k] for k in p.override_settings.keys()}
  522. try:
  523. # if no checkpoint override or the override checkpoint can't be found, remove override entry and load opts checkpoint
  524. if sd_models.checkpoint_aliases.get(p.override_settings.get('sd_model_checkpoint')) is None:
  525. p.override_settings.pop('sd_model_checkpoint', None)
  526. sd_models.reload_model_weights()
  527. for k, v in p.override_settings.items():
  528. setattr(opts, k, v)
  529. if k == 'sd_model_checkpoint':
  530. sd_models.reload_model_weights()
  531. if k == 'sd_vae':
  532. sd_vae.reload_vae_weights()
  533. sd_models.apply_token_merging(p.sd_model, p.get_token_merging_ratio())
  534. res = process_images_inner(p)
  535. finally:
  536. sd_models.apply_token_merging(p.sd_model, 0)
  537. # restore opts to original state
  538. if p.override_settings_restore_afterwards:
  539. for k, v in stored_opts.items():
  540. setattr(opts, k, v)
  541. if k == 'sd_vae':
  542. sd_vae.reload_vae_weights()
  543. return res
  544. def process_images_inner(p: StableDiffusionProcessing) -> Processed:
  545. """this is the main loop that both txt2img and img2img use; it calls func_init once inside all the scopes and func_sample once per batch"""
  546. if type(p.prompt) == list:
  547. assert(len(p.prompt) > 0)
  548. else:
  549. assert p.prompt is not None
  550. devices.torch_gc()
  551. seed = get_fixed_seed(p.seed)
  552. subseed = get_fixed_seed(p.subseed)
  553. modules.sd_hijack.model_hijack.apply_circular(p.tiling)
  554. modules.sd_hijack.model_hijack.clear_comments()
  555. comments = {}
  556. p.setup_prompts()
  557. if type(seed) == list:
  558. p.all_seeds = seed
  559. else:
  560. p.all_seeds = [int(seed) + (x if p.subseed_strength == 0 else 0) for x in range(len(p.all_prompts))]
  561. if type(subseed) == list:
  562. p.all_subseeds = subseed
  563. else:
  564. p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
  565. if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
  566. model_hijack.embedding_db.load_textual_inversion_embeddings()
  567. if p.scripts is not None:
  568. p.scripts.process(p)
  569. infotexts = []
  570. output_images = []
  571. with torch.no_grad(), p.sd_model.ema_scope():
  572. with devices.autocast():
  573. p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
  574. # for OSX, loading the model during sampling changes the generated picture, so it is loaded here
  575. if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
  576. sd_vae_approx.model()
  577. sd_unet.apply_unet()
  578. if state.job_count == -1:
  579. state.job_count = p.n_iter
  580. for n in range(p.n_iter):
  581. p.iteration = n
  582. if state.skipped:
  583. state.skipped = False
  584. if state.interrupted:
  585. break
  586. p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  587. p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  588. p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size]
  589. p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size]
  590. if p.scripts is not None:
  591. p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
  592. if len(p.prompts) == 0:
  593. break
  594. p.parse_extra_network_prompts()
  595. if not p.disable_extra_networks:
  596. with devices.autocast():
  597. extra_networks.activate(p, p.extra_network_data)
  598. if p.scripts is not None:
  599. p.scripts.process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds)
  600. # params.txt should be saved after scripts.process_batch, since the
  601. # infotext could be modified by that callback
  602. # Example: a wildcard processed by process_batch sets an extra model
  603. # strength, which is saved as "Model Strength: 1.0" in the infotext
  604. if n == 0:
  605. with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
  606. processed = Processed(p, [], p.seed, "")
  607. file.write(processed.infotext(p, 0))
  608. p.setup_conds()
  609. for comment in model_hijack.comments:
  610. comments[comment] = 1
  611. p.extra_generation_params.update(model_hijack.extra_generation_params)
  612. if p.n_iter > 1:
  613. shared.state.job = f"Batch {n+1} out of {p.n_iter}"
  614. with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
  615. samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
  616. x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
  617. x_samples_ddim = torch.stack(x_samples_ddim).float()
  618. x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
  619. del samples_ddim
  620. if lowvram.is_enabled(shared.sd_model):
  621. lowvram.send_everything_to_cpu()
  622. devices.torch_gc()
  623. if p.scripts is not None:
  624. p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
  625. p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  626. p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
  627. batch_params = scripts.PostprocessBatchListArgs(list(x_samples_ddim))
  628. p.scripts.postprocess_batch_list(p, batch_params, batch_number=n)
  629. x_samples_ddim = batch_params.images
  630. def infotext(index=0, use_main_prompt=False):
  631. return create_infotext(p, p.prompts, p.seeds, p.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=p.negative_prompts)
  632. for i, x_sample in enumerate(x_samples_ddim):
  633. p.batch_index = i
  634. x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
  635. x_sample = x_sample.astype(np.uint8)
  636. if p.restore_faces:
  637. if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
  638. images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-face-restoration")
  639. devices.torch_gc()
  640. x_sample = modules.face_restoration.restore_faces(x_sample)
  641. devices.torch_gc()
  642. image = Image.fromarray(x_sample)
  643. if p.scripts is not None:
  644. pp = scripts.PostprocessImageArgs(image)
  645. p.scripts.postprocess_image(p, pp)
  646. image = pp.image
  647. if p.color_corrections is not None and i < len(p.color_corrections):
  648. if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
  649. image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
  650. images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction")
  651. image = apply_color_correction(p.color_corrections[i], image)
  652. image = apply_overlay(image, p.paste_to, i, p.overlay_images)
  653. if opts.samples_save and not p.do_not_save_samples:
  654. images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p)
  655. text = infotext(i)
  656. infotexts.append(text)
  657. if opts.enable_pnginfo:
  658. image.info["parameters"] = text
  659. output_images.append(image)
  660. if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
  661. image_mask = p.mask_for_overlay.convert('RGB')
  662. image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
  663. if opts.save_mask:
  664. images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
  665. if opts.save_mask_composite:
  666. images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
  667. if opts.return_mask:
  668. output_images.append(image_mask)
  669. if opts.return_mask_composite:
  670. output_images.append(image_mask_composite)
  671. del x_samples_ddim
  672. devices.torch_gc()
  673. state.nextjob()
  674. p.color_corrections = None
  675. index_of_first_image = 0
  676. unwanted_grid_because_of_img_count = len(output_images) < 2 and opts.grid_only_if_multiple
  677. if (opts.return_grid or opts.grid_save) and not p.do_not_save_grid and not unwanted_grid_because_of_img_count:
  678. grid = images.image_grid(output_images, p.batch_size)
  679. if opts.return_grid:
  680. text = infotext(use_main_prompt=True)
  681. infotexts.insert(0, text)
  682. if opts.enable_pnginfo:
  683. grid.info["parameters"] = text
  684. output_images.insert(0, grid)
  685. index_of_first_image = 1
  686. if opts.grid_save:
  687. images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(use_main_prompt=True), short_filename=not opts.grid_extended_filename, p=p, grid=True)
  688. if not p.disable_extra_networks and p.extra_network_data:
  689. extra_networks.deactivate(p, p.extra_network_data)
  690. devices.torch_gc()
  691. res = Processed(
  692. p,
  693. images_list=output_images,
  694. seed=p.all_seeds[0],
  695. info=infotexts[0],
  696. comments="".join(f"{comment}\n" for comment in comments),
  697. subseed=p.all_subseeds[0],
  698. index_of_first_image=index_of_first_image,
  699. infotexts=infotexts,
  700. )
  701. if p.scripts is not None:
  702. p.scripts.postprocess(p, res)
  703. return res
  704. def old_hires_fix_first_pass_dimensions(width, height):
  705. """old algorithm for auto-calculating first pass size"""
  706. desired_pixel_count = 512 * 512
  707. actual_pixel_count = width * height
  708. scale = math.sqrt(desired_pixel_count / actual_pixel_count)
  709. width = math.ceil(scale * width / 64) * 64
  710. height = math.ceil(scale * height / 64) * 64
  711. return width, height
  712. class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
  713. sampler = None
  714. cached_hr_uc = [None, None]
  715. cached_hr_c = [None, None]
  716. def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs):
  717. super().__init__(**kwargs)
  718. self.enable_hr = enable_hr
  719. self.denoising_strength = denoising_strength
  720. self.hr_scale = hr_scale
  721. self.hr_upscaler = hr_upscaler
  722. self.hr_second_pass_steps = hr_second_pass_steps
  723. self.hr_resize_x = hr_resize_x
  724. self.hr_resize_y = hr_resize_y
  725. self.hr_upscale_to_x = hr_resize_x
  726. self.hr_upscale_to_y = hr_resize_y
  727. self.hr_sampler_name = hr_sampler_name
  728. self.hr_prompt = hr_prompt
  729. self.hr_negative_prompt = hr_negative_prompt
  730. self.all_hr_prompts = None
  731. self.all_hr_negative_prompts = None
  732. if firstphase_width != 0 or firstphase_height != 0:
  733. self.hr_upscale_to_x = self.width
  734. self.hr_upscale_to_y = self.height
  735. self.width = firstphase_width
  736. self.height = firstphase_height
  737. self.truncate_x = 0
  738. self.truncate_y = 0
  739. self.applied_old_hires_behavior_to = None
  740. self.hr_prompts = None
  741. self.hr_negative_prompts = None
  742. self.hr_extra_network_data = None
  743. self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc
  744. self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c
  745. self.hr_c = None
  746. self.hr_uc = None
  747. def init(self, all_prompts, all_seeds, all_subseeds):
  748. if self.enable_hr:
  749. if self.hr_sampler_name is not None and self.hr_sampler_name != self.sampler_name:
  750. self.extra_generation_params["Hires sampler"] = self.hr_sampler_name
  751. if tuple(self.hr_prompt) != tuple(self.prompt):
  752. self.extra_generation_params["Hires prompt"] = self.hr_prompt
  753. if tuple(self.hr_negative_prompt) != tuple(self.negative_prompt):
  754. self.extra_generation_params["Hires negative prompt"] = self.hr_negative_prompt
  755. if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height):
  756. self.hr_resize_x = self.width
  757. self.hr_resize_y = self.height
  758. self.hr_upscale_to_x = self.width
  759. self.hr_upscale_to_y = self.height
  760. self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height)
  761. self.applied_old_hires_behavior_to = (self.width, self.height)
  762. if self.hr_resize_x == 0 and self.hr_resize_y == 0:
  763. self.extra_generation_params["Hires upscale"] = self.hr_scale
  764. self.hr_upscale_to_x = int(self.width * self.hr_scale)
  765. self.hr_upscale_to_y = int(self.height * self.hr_scale)
  766. else:
  767. self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}"
  768. if self.hr_resize_y == 0:
  769. self.hr_upscale_to_x = self.hr_resize_x
  770. self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
  771. elif self.hr_resize_x == 0:
  772. self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
  773. self.hr_upscale_to_y = self.hr_resize_y
  774. else:
  775. target_w = self.hr_resize_x
  776. target_h = self.hr_resize_y
  777. src_ratio = self.width / self.height
  778. dst_ratio = self.hr_resize_x / self.hr_resize_y
  779. if src_ratio < dst_ratio:
  780. self.hr_upscale_to_x = self.hr_resize_x
  781. self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width
  782. else:
  783. self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height
  784. self.hr_upscale_to_y = self.hr_resize_y
  785. self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f
  786. self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f
  787. # special case: the user has chosen to do nothing
  788. if self.hr_upscale_to_x == self.width and self.hr_upscale_to_y == self.height:
  789. self.enable_hr = False
  790. self.denoising_strength = None
  791. self.extra_generation_params.pop("Hires upscale", None)
  792. self.extra_generation_params.pop("Hires resize", None)
  793. return
  794. if not state.processing_has_refined_job_count:
  795. if state.job_count == -1:
  796. state.job_count = self.n_iter
  797. shared.total_tqdm.updateTotal((self.steps + (self.hr_second_pass_steps or self.steps)) * state.job_count)
  798. state.job_count = state.job_count * 2
  799. state.processing_has_refined_job_count = True
  800. if self.hr_second_pass_steps:
  801. self.extra_generation_params["Hires steps"] = self.hr_second_pass_steps
  802. if self.hr_upscaler is not None:
  803. self.extra_generation_params["Hires upscaler"] = self.hr_upscaler
  804. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  805. self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
  806. latent_scale_mode = shared.latent_upscale_modes.get(self.hr_upscaler, None) if self.hr_upscaler is not None else shared.latent_upscale_modes.get(shared.latent_upscale_default_mode, "nearest")
  807. if self.enable_hr and latent_scale_mode is None:
  808. if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers):
  809. raise Exception(f"could not find upscaler named {self.hr_upscaler}")
  810. x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
  811. samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x))
  812. if not self.enable_hr:
  813. return samples
  814. self.is_hr_pass = True
  815. target_width = self.hr_upscale_to_x
  816. target_height = self.hr_upscale_to_y
  817. def save_intermediate(image, index):
  818. """saves image before applying hires fix, if enabled in options; takes as an argument either an image or batch with latent space images"""
  819. if not opts.save or self.do_not_save_samples or not opts.save_images_before_highres_fix:
  820. return
  821. if not isinstance(image, Image.Image):
  822. image = sd_samplers.sample_to_image(image, index, approximation=0)
  823. info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
  824. images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, p=self, suffix="-before-highres-fix")
  825. if latent_scale_mode is not None:
  826. for i in range(samples.shape[0]):
  827. save_intermediate(samples, i)
  828. samples = torch.nn.functional.interpolate(samples, size=(target_height // opt_f, target_width // opt_f), mode=latent_scale_mode["mode"], antialias=latent_scale_mode["antialias"])
  829. # Avoid making the inpainting conditioning unless necessary as
  830. # this does need some extra compute to decode / encode the image again.
  831. if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0:
  832. image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples)
  833. else:
  834. image_conditioning = self.txt2img_image_conditioning(samples)
  835. else:
  836. decoded_samples = decode_first_stage(self.sd_model, samples)
  837. lowres_samples = torch.clamp((decoded_samples + 1.0) / 2.0, min=0.0, max=1.0)
  838. batch_images = []
  839. for i, x_sample in enumerate(lowres_samples):
  840. x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
  841. x_sample = x_sample.astype(np.uint8)
  842. image = Image.fromarray(x_sample)
  843. save_intermediate(image, i)
  844. image = images.resize_image(0, image, target_width, target_height, upscaler_name=self.hr_upscaler)
  845. image = np.array(image).astype(np.float32) / 255.0
  846. image = np.moveaxis(image, 2, 0)
  847. batch_images.append(image)
  848. decoded_samples = torch.from_numpy(np.array(batch_images))
  849. decoded_samples = decoded_samples.to(shared.device)
  850. decoded_samples = 2. * decoded_samples - 1.
  851. samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
  852. image_conditioning = self.img2img_image_conditioning(decoded_samples, samples)
  853. shared.state.nextjob()
  854. img2img_sampler_name = self.hr_sampler_name or self.sampler_name
  855. if self.sampler_name in ['PLMS', 'UniPC']: # PLMS/UniPC do not support img2img so we just silently switch to DDIM
  856. img2img_sampler_name = 'DDIM'
  857. self.sampler = sd_samplers.create_sampler(img2img_sampler_name, self.sd_model)
  858. samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2]
  859. noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self)
  860. # GC now before running the next img2img to prevent running out of memory
  861. x = None
  862. devices.torch_gc()
  863. if not self.disable_extra_networks:
  864. with devices.autocast():
  865. extra_networks.activate(self, self.hr_extra_network_data)
  866. with devices.autocast():
  867. self.calculate_hr_conds()
  868. sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio(for_hr=True))
  869. if self.scripts is not None:
  870. self.scripts.before_hr(self)
  871. samples = self.sampler.sample_img2img(self, samples, noise, self.hr_c, self.hr_uc, steps=self.hr_second_pass_steps or self.steps, image_conditioning=image_conditioning)
  872. sd_models.apply_token_merging(self.sd_model, self.get_token_merging_ratio())
  873. self.is_hr_pass = False
  874. return samples
  875. def close(self):
  876. super().close()
  877. self.hr_c = None
  878. self.hr_uc = None
  879. if not opts.experimental_persistent_cond_cache:
  880. StableDiffusionProcessingTxt2Img.cached_hr_uc = [None, None]
  881. StableDiffusionProcessingTxt2Img.cached_hr_c = [None, None]
  882. def setup_prompts(self):
  883. super().setup_prompts()
  884. if not self.enable_hr:
  885. return
  886. if self.hr_prompt == '':
  887. self.hr_prompt = self.prompt
  888. if self.hr_negative_prompt == '':
  889. self.hr_negative_prompt = self.negative_prompt
  890. if type(self.hr_prompt) == list:
  891. self.all_hr_prompts = self.hr_prompt
  892. else:
  893. self.all_hr_prompts = self.batch_size * self.n_iter * [self.hr_prompt]
  894. if type(self.hr_negative_prompt) == list:
  895. self.all_hr_negative_prompts = self.hr_negative_prompt
  896. else:
  897. self.all_hr_negative_prompts = self.batch_size * self.n_iter * [self.hr_negative_prompt]
  898. self.all_hr_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_hr_prompts]
  899. self.all_hr_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_hr_negative_prompts]
  900. def calculate_hr_conds(self):
  901. if self.hr_c is not None:
  902. return
  903. self.hr_uc = self.get_conds_with_caching(prompt_parser.get_learned_conditioning, self.hr_negative_prompts, self.steps * self.step_multiplier, [self.cached_hr_uc, self.cached_uc], self.hr_extra_network_data)
  904. self.hr_c = self.get_conds_with_caching(prompt_parser.get_multicond_learned_conditioning, self.hr_prompts, self.steps * self.step_multiplier, [self.cached_hr_c, self.cached_c], self.hr_extra_network_data)
  905. def setup_conds(self):
  906. super().setup_conds()
  907. self.hr_uc = None
  908. self.hr_c = None
  909. if self.enable_hr:
  910. if shared.opts.hires_fix_use_firstpass_conds:
  911. self.calculate_hr_conds()
  912. elif lowvram.is_enabled(shared.sd_model): # if in lowvram mode, we need to calculate conds right away, before the cond NN is unloaded
  913. with devices.autocast():
  914. extra_networks.activate(self, self.hr_extra_network_data)
  915. self.calculate_hr_conds()
  916. with devices.autocast():
  917. extra_networks.activate(self, self.extra_network_data)
  918. def parse_extra_network_prompts(self):
  919. res = super().parse_extra_network_prompts()
  920. if self.enable_hr:
  921. self.hr_prompts = self.all_hr_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
  922. self.hr_negative_prompts = self.all_hr_negative_prompts[self.iteration * self.batch_size:(self.iteration + 1) * self.batch_size]
  923. self.hr_prompts, self.hr_extra_network_data = extra_networks.parse_prompts(self.hr_prompts)
  924. return res
  925. class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
  926. sampler = None
  927. def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = None, mask_blur_x: int = 4, mask_blur_y: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
  928. super().__init__(**kwargs)
  929. self.init_images = init_images
  930. self.resize_mode: int = resize_mode
  931. self.denoising_strength: float = denoising_strength
  932. self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
  933. self.init_latent = None
  934. self.image_mask = mask
  935. self.latent_mask = None
  936. self.mask_for_overlay = None
  937. if mask_blur is not None:
  938. mask_blur_x = mask_blur
  939. mask_blur_y = mask_blur
  940. self.mask_blur_x = mask_blur_x
  941. self.mask_blur_y = mask_blur_y
  942. self.inpainting_fill = inpainting_fill
  943. self.inpaint_full_res = inpaint_full_res
  944. self.inpaint_full_res_padding = inpaint_full_res_padding
  945. self.inpainting_mask_invert = inpainting_mask_invert
  946. self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier
  947. self.mask = None
  948. self.nmask = None
  949. self.image_conditioning = None
  950. def init(self, all_prompts, all_seeds, all_subseeds):
  951. self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model)
  952. crop_region = None
  953. image_mask = self.image_mask
  954. if image_mask is not None:
  955. image_mask = image_mask.convert('L')
  956. if self.inpainting_mask_invert:
  957. image_mask = ImageOps.invert(image_mask)
  958. if self.mask_blur_x > 0:
  959. np_mask = np.array(image_mask)
  960. kernel_size = 2 * int(4 * self.mask_blur_x + 0.5) + 1
  961. np_mask = cv2.GaussianBlur(np_mask, (kernel_size, 1), self.mask_blur_x)
  962. image_mask = Image.fromarray(np_mask)
  963. if self.mask_blur_y > 0:
  964. np_mask = np.array(image_mask)
  965. kernel_size = 2 * int(4 * self.mask_blur_y + 0.5) + 1
  966. np_mask = cv2.GaussianBlur(np_mask, (1, kernel_size), self.mask_blur_y)
  967. image_mask = Image.fromarray(np_mask)
  968. if self.inpaint_full_res:
  969. self.mask_for_overlay = image_mask
  970. mask = image_mask.convert('L')
  971. crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding)
  972. crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height)
  973. x1, y1, x2, y2 = crop_region
  974. mask = mask.crop(crop_region)
  975. image_mask = images.resize_image(2, mask, self.width, self.height)
  976. self.paste_to = (x1, y1, x2-x1, y2-y1)
  977. else:
  978. image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height)
  979. np_mask = np.array(image_mask)
  980. np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8)
  981. self.mask_for_overlay = Image.fromarray(np_mask)
  982. self.overlay_images = []
  983. latent_mask = self.latent_mask if self.latent_mask is not None else image_mask
  984. add_color_corrections = opts.img2img_color_correction and self.color_corrections is None
  985. if add_color_corrections:
  986. self.color_corrections = []
  987. imgs = []
  988. for img in self.init_images:
  989. # Save init image
  990. if opts.save_init_img:
  991. self.init_img_hash = hashlib.md5(img.tobytes()).hexdigest()
  992. images.save_image(img, path=opts.outdir_init_images, basename=None, forced_filename=self.init_img_hash, save_to_dirs=False)
  993. image = images.flatten(img, opts.img2img_background_color)
  994. if crop_region is None and self.resize_mode != 3:
  995. image = images.resize_image(self.resize_mode, image, self.width, self.height)
  996. if image_mask is not None:
  997. image_masked = Image.new('RGBa', (image.width, image.height))
  998. image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(self.mask_for_overlay.convert('L')))
  999. self.overlay_images.append(image_masked.convert('RGBA'))
  1000. # crop_region is not None if we are doing inpaint full res
  1001. if crop_region is not None:
  1002. image = image.crop(crop_region)
  1003. image = images.resize_image(2, image, self.width, self.height)
  1004. if image_mask is not None:
  1005. if self.inpainting_fill != 1:
  1006. image = masking.fill(image, latent_mask)
  1007. if add_color_corrections:
  1008. self.color_corrections.append(setup_color_correction(image))
  1009. image = np.array(image).astype(np.float32) / 255.0
  1010. image = np.moveaxis(image, 2, 0)
  1011. imgs.append(image)
  1012. if len(imgs) == 1:
  1013. batch_images = np.expand_dims(imgs[0], axis=0).repeat(self.batch_size, axis=0)
  1014. if self.overlay_images is not None:
  1015. self.overlay_images = self.overlay_images * self.batch_size
  1016. if self.color_corrections is not None and len(self.color_corrections) == 1:
  1017. self.color_corrections = self.color_corrections * self.batch_size
  1018. elif len(imgs) <= self.batch_size:
  1019. self.batch_size = len(imgs)
  1020. batch_images = np.array(imgs)
  1021. else:
  1022. raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
  1023. image = torch.from_numpy(batch_images)
  1024. image = 2. * image - 1.
  1025. image = image.to(shared.device, dtype=devices.dtype_vae)
  1026. self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
  1027. if self.resize_mode == 3:
  1028. self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
  1029. if image_mask is not None:
  1030. init_mask = latent_mask
  1031. latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2]))
  1032. latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255
  1033. latmask = latmask[0]
  1034. latmask = np.around(latmask)
  1035. latmask = np.tile(latmask[None], (4, 1, 1))
  1036. self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
  1037. self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
  1038. # this needs to be fixed to be done in sample() using actual seeds for batches
  1039. if self.inpainting_fill == 2:
  1040. self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
  1041. elif self.inpainting_fill == 3:
  1042. self.init_latent = self.init_latent * self.mask
  1043. self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask)
  1044. def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
  1045. x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
  1046. if self.initial_noise_multiplier != 1.0:
  1047. self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier
  1048. x *= self.initial_noise_multiplier
  1049. samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
  1050. if self.mask is not None:
  1051. samples = samples * self.nmask + self.init_latent * self.mask
  1052. del x
  1053. devices.torch_gc()
  1054. return samples
  1055. def get_token_merging_ratio(self, for_hr=False):
  1056. return self.token_merging_ratio or ("token_merging_ratio" in self.override_settings and opts.token_merging_ratio) or opts.token_merging_ratio_img2img or opts.token_merging_ratio