123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- from __future__ import annotations
- import os
- import shutil
- import importlib
- from urllib.parse import urlparse
- from modules import shared
- from modules.upscaler import Upscaler, UpscalerLanczos, UpscalerNearest, UpscalerNone
- from modules.paths import script_path, models_path
- def load_file_from_url(
- url: str,
- *,
- model_dir: str,
- progress: bool = True,
- file_name: str | None = None,
- ) -> str:
- """Download a file from `url` into `model_dir`, using the file present if possible.
- Returns the path to the downloaded file.
- """
- os.makedirs(model_dir, exist_ok=True)
- if not file_name:
- parts = urlparse(url)
- file_name = os.path.basename(parts.path)
- cached_file = os.path.abspath(os.path.join(model_dir, file_name))
- if not os.path.exists(cached_file):
- print(f'Downloading: "{url}" to {cached_file}\n')
- from torch.hub import download_url_to_file
- download_url_to_file(url, cached_file, progress=progress)
- return cached_file
- def load_models(model_path: str, model_url: str = None, command_path: str = None, ext_filter=None, download_name=None, ext_blacklist=None) -> list:
- """
- A one-and done loader to try finding the desired models in specified directories.
- @param download_name: Specify to download from model_url immediately.
- @param model_url: If no other models are found, this will be downloaded on upscale.
- @param model_path: The location to store/find models in.
- @param command_path: A command-line argument to search for models in first.
- @param ext_filter: An optional list of filename extensions to filter by
- @return: A list of paths containing the desired model(s)
- """
- output = []
- try:
- places = []
- if command_path is not None and command_path != model_path:
- pretrained_path = os.path.join(command_path, 'experiments/pretrained_models')
- if os.path.exists(pretrained_path):
- print(f"Appending path: {pretrained_path}")
- places.append(pretrained_path)
- elif os.path.exists(command_path):
- places.append(command_path)
- places.append(model_path)
- for place in places:
- for full_path in shared.walk_files(place, allowed_extensions=ext_filter):
- if os.path.islink(full_path) and not os.path.exists(full_path):
- print(f"Skipping broken symlink: {full_path}")
- continue
- if ext_blacklist is not None and any(full_path.endswith(x) for x in ext_blacklist):
- continue
- if full_path not in output:
- output.append(full_path)
- if model_url is not None and len(output) == 0:
- if download_name is not None:
- output.append(load_file_from_url(model_url, model_dir=places[0], file_name=download_name))
- else:
- output.append(model_url)
- except Exception:
- pass
- return output
- def friendly_name(file: str):
- if file.startswith("http"):
- file = urlparse(file).path
- file = os.path.basename(file)
- model_name, extension = os.path.splitext(file)
- return model_name
- def cleanup_models():
- # This code could probably be more efficient if we used a tuple list or something to store the src/destinations
- # and then enumerate that, but this works for now. In the future, it'd be nice to just have every "model" scaler
- # somehow auto-register and just do these things...
- root_path = script_path
- src_path = models_path
- dest_path = os.path.join(models_path, "Stable-diffusion")
- move_files(src_path, dest_path, ".ckpt")
- move_files(src_path, dest_path, ".safetensors")
- src_path = os.path.join(root_path, "ESRGAN")
- dest_path = os.path.join(models_path, "ESRGAN")
- move_files(src_path, dest_path)
- src_path = os.path.join(models_path, "BSRGAN")
- dest_path = os.path.join(models_path, "ESRGAN")
- move_files(src_path, dest_path, ".pth")
- src_path = os.path.join(root_path, "gfpgan")
- dest_path = os.path.join(models_path, "GFPGAN")
- move_files(src_path, dest_path)
- src_path = os.path.join(root_path, "SwinIR")
- dest_path = os.path.join(models_path, "SwinIR")
- move_files(src_path, dest_path)
- src_path = os.path.join(root_path, "repositories/latent-diffusion/experiments/pretrained_models/")
- dest_path = os.path.join(models_path, "LDSR")
- move_files(src_path, dest_path)
- def move_files(src_path: str, dest_path: str, ext_filter: str = None):
- try:
- os.makedirs(dest_path, exist_ok=True)
- if os.path.exists(src_path):
- for file in os.listdir(src_path):
- fullpath = os.path.join(src_path, file)
- if os.path.isfile(fullpath):
- if ext_filter is not None:
- if ext_filter not in file:
- continue
- print(f"Moving {file} from {src_path} to {dest_path}.")
- try:
- shutil.move(fullpath, dest_path)
- except Exception:
- pass
- if len(os.listdir(src_path)) == 0:
- print(f"Removing empty folder: {src_path}")
- shutil.rmtree(src_path, True)
- except Exception:
- pass
- def load_upscalers():
- # We can only do this 'magic' method to dynamically load upscalers if they are referenced,
- # so we'll try to import any _model.py files before looking in __subclasses__
- modules_dir = os.path.join(shared.script_path, "modules")
- for file in os.listdir(modules_dir):
- if "_model.py" in file:
- model_name = file.replace("_model.py", "")
- full_model = f"modules.{model_name}_model"
- try:
- importlib.import_module(full_model)
- except Exception:
- pass
- datas = []
- commandline_options = vars(shared.cmd_opts)
- # some of upscaler classes will not go away after reloading their modules, and we'll end
- # up with two copies of those classes. The newest copy will always be the last in the list,
- # so we go from end to beginning and ignore duplicates
- used_classes = {}
- for cls in reversed(Upscaler.__subclasses__()):
- classname = str(cls)
- if classname not in used_classes:
- used_classes[classname] = cls
- for cls in reversed(used_classes.values()):
- name = cls.__name__
- cmd_name = f"{name.lower().replace('upscaler', '')}_models_path"
- commandline_model_path = commandline_options.get(cmd_name, None)
- scaler = cls(commandline_model_path)
- scaler.user_path = commandline_model_path
- scaler.model_download_path = commandline_model_path or scaler.model_path
- datas += scaler.scalers
- shared.sd_upscalers = sorted(
- datas,
- # Special case for UpscalerNone keeps it at the beginning of the list.
- key=lambda x: x.name.lower() if not isinstance(x.scaler, (UpscalerNone, UpscalerLanczos, UpscalerNearest)) else ""
- )
|