123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783 |
- import datetime
- import glob
- import html
- import os
- import inspect
- from contextlib import closing
- import modules.textual_inversion.dataset
- import torch
- import tqdm
- from einops import rearrange, repeat
- from ldm.util import default
- from modules import devices, processing, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors
- from modules.textual_inversion import textual_inversion, logging
- from modules.textual_inversion.learn_schedule import LearnRateScheduler
- from torch import einsum
- from torch.nn.init import normal_, xavier_normal_, xavier_uniform_, kaiming_normal_, kaiming_uniform_, zeros_
- from collections import deque
- from statistics import stdev, mean
- optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"}
- class HypernetworkModule(torch.nn.Module):
- activation_dict = {
- "linear": torch.nn.Identity,
- "relu": torch.nn.ReLU,
- "leakyrelu": torch.nn.LeakyReLU,
- "elu": torch.nn.ELU,
- "swish": torch.nn.Hardswish,
- "tanh": torch.nn.Tanh,
- "sigmoid": torch.nn.Sigmoid,
- }
- activation_dict.update({cls_name.lower(): cls_obj for cls_name, cls_obj in inspect.getmembers(torch.nn.modules.activation) if inspect.isclass(cls_obj) and cls_obj.__module__ == 'torch.nn.modules.activation'})
- def __init__(self, dim, state_dict=None, layer_structure=None, activation_func=None, weight_init='Normal',
- add_layer_norm=False, activate_output=False, dropout_structure=None):
- super().__init__()
- self.multiplier = 1.0
- assert layer_structure is not None, "layer_structure must not be None"
- assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!"
- assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!"
- linears = []
- for i in range(len(layer_structure) - 1):
- # Add a fully-connected layer
- linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1])))
- # Add an activation func except last layer
- if activation_func == "linear" or activation_func is None or (i >= len(layer_structure) - 2 and not activate_output):
- pass
- elif activation_func in self.activation_dict:
- linears.append(self.activation_dict[activation_func]())
- else:
- raise RuntimeError(f'hypernetwork uses an unsupported activation function: {activation_func}')
- # Add layer normalization
- if add_layer_norm:
- linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1])))
- # Everything should be now parsed into dropout structure, and applied here.
- # Since we only have dropouts after layers, dropout structure should start with 0 and end with 0.
- if dropout_structure is not None and dropout_structure[i+1] > 0:
- assert 0 < dropout_structure[i+1] < 1, "Dropout probability should be 0 or float between 0 and 1!"
- linears.append(torch.nn.Dropout(p=dropout_structure[i+1]))
- # Code explanation : [1, 2, 1] -> dropout is missing when last_layer_dropout is false. [1, 2, 2, 1] -> [0, 0.3, 0, 0], when its True, [0, 0.3, 0.3, 0].
- self.linear = torch.nn.Sequential(*linears)
- if state_dict is not None:
- self.fix_old_state_dict(state_dict)
- self.load_state_dict(state_dict)
- else:
- for layer in self.linear:
- if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
- w, b = layer.weight.data, layer.bias.data
- if weight_init == "Normal" or type(layer) == torch.nn.LayerNorm:
- normal_(w, mean=0.0, std=0.01)
- normal_(b, mean=0.0, std=0)
- elif weight_init == 'XavierUniform':
- xavier_uniform_(w)
- zeros_(b)
- elif weight_init == 'XavierNormal':
- xavier_normal_(w)
- zeros_(b)
- elif weight_init == 'KaimingUniform':
- kaiming_uniform_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
- zeros_(b)
- elif weight_init == 'KaimingNormal':
- kaiming_normal_(w, nonlinearity='leaky_relu' if 'leakyrelu' == activation_func else 'relu')
- zeros_(b)
- else:
- raise KeyError(f"Key {weight_init} is not defined as initialization!")
- self.to(devices.device)
- def fix_old_state_dict(self, state_dict):
- changes = {
- 'linear1.bias': 'linear.0.bias',
- 'linear1.weight': 'linear.0.weight',
- 'linear2.bias': 'linear.1.bias',
- 'linear2.weight': 'linear.1.weight',
- }
- for fr, to in changes.items():
- x = state_dict.get(fr, None)
- if x is None:
- continue
- del state_dict[fr]
- state_dict[to] = x
- def forward(self, x):
- return x + self.linear(x) * (self.multiplier if not self.training else 1)
- def trainables(self):
- layer_structure = []
- for layer in self.linear:
- if type(layer) == torch.nn.Linear or type(layer) == torch.nn.LayerNorm:
- layer_structure += [layer.weight, layer.bias]
- return layer_structure
- #param layer_structure : sequence used for length, use_dropout : controlling boolean, last_layer_dropout : for compatibility check.
- def parse_dropout_structure(layer_structure, use_dropout, last_layer_dropout):
- if layer_structure is None:
- layer_structure = [1, 2, 1]
- if not use_dropout:
- return [0] * len(layer_structure)
- dropout_values = [0]
- dropout_values.extend([0.3] * (len(layer_structure) - 3))
- if last_layer_dropout:
- dropout_values.append(0.3)
- else:
- dropout_values.append(0)
- dropout_values.append(0)
- return dropout_values
- class Hypernetwork:
- filename = None
- name = None
- def __init__(self, name=None, enable_sizes=None, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, activate_output=False, **kwargs):
- self.filename = None
- self.name = name
- self.layers = {}
- self.step = 0
- self.sd_checkpoint = None
- self.sd_checkpoint_name = None
- self.layer_structure = layer_structure
- self.activation_func = activation_func
- self.weight_init = weight_init
- self.add_layer_norm = add_layer_norm
- self.use_dropout = use_dropout
- self.activate_output = activate_output
- self.last_layer_dropout = kwargs.get('last_layer_dropout', True)
- self.dropout_structure = kwargs.get('dropout_structure', None)
- if self.dropout_structure is None:
- self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
- self.optimizer_name = None
- self.optimizer_state_dict = None
- self.optional_info = None
- for size in enable_sizes or []:
- self.layers[size] = (
- HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
- self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
- HypernetworkModule(size, None, self.layer_structure, self.activation_func, self.weight_init,
- self.add_layer_norm, self.activate_output, dropout_structure=self.dropout_structure),
- )
- self.eval()
- def weights(self):
- res = []
- for layers in self.layers.values():
- for layer in layers:
- res += layer.parameters()
- return res
- def train(self, mode=True):
- for layers in self.layers.values():
- for layer in layers:
- layer.train(mode=mode)
- for param in layer.parameters():
- param.requires_grad = mode
- def to(self, device):
- for layers in self.layers.values():
- for layer in layers:
- layer.to(device)
- return self
- def set_multiplier(self, multiplier):
- for layers in self.layers.values():
- for layer in layers:
- layer.multiplier = multiplier
- return self
- def eval(self):
- for layers in self.layers.values():
- for layer in layers:
- layer.eval()
- for param in layer.parameters():
- param.requires_grad = False
- def save(self, filename):
- state_dict = {}
- optimizer_saved_dict = {}
- for k, v in self.layers.items():
- state_dict[k] = (v[0].state_dict(), v[1].state_dict())
- state_dict['step'] = self.step
- state_dict['name'] = self.name
- state_dict['layer_structure'] = self.layer_structure
- state_dict['activation_func'] = self.activation_func
- state_dict['is_layer_norm'] = self.add_layer_norm
- state_dict['weight_initialization'] = self.weight_init
- state_dict['sd_checkpoint'] = self.sd_checkpoint
- state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
- state_dict['activate_output'] = self.activate_output
- state_dict['use_dropout'] = self.use_dropout
- state_dict['dropout_structure'] = self.dropout_structure
- state_dict['last_layer_dropout'] = (self.dropout_structure[-2] != 0) if self.dropout_structure is not None else self.last_layer_dropout
- state_dict['optional_info'] = self.optional_info if self.optional_info else None
- if self.optimizer_name is not None:
- optimizer_saved_dict['optimizer_name'] = self.optimizer_name
- torch.save(state_dict, filename)
- if shared.opts.save_optimizer_state and self.optimizer_state_dict:
- optimizer_saved_dict['hash'] = self.shorthash()
- optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict
- torch.save(optimizer_saved_dict, filename + '.optim')
- def load(self, filename):
- self.filename = filename
- if self.name is None:
- self.name = os.path.splitext(os.path.basename(filename))[0]
- state_dict = torch.load(filename, map_location='cpu')
- self.layer_structure = state_dict.get('layer_structure', [1, 2, 1])
- self.optional_info = state_dict.get('optional_info', None)
- self.activation_func = state_dict.get('activation_func', None)
- self.weight_init = state_dict.get('weight_initialization', 'Normal')
- self.add_layer_norm = state_dict.get('is_layer_norm', False)
- self.dropout_structure = state_dict.get('dropout_structure', None)
- self.use_dropout = True if self.dropout_structure is not None and any(self.dropout_structure) else state_dict.get('use_dropout', False)
- self.activate_output = state_dict.get('activate_output', True)
- self.last_layer_dropout = state_dict.get('last_layer_dropout', False)
- # Dropout structure should have same length as layer structure, Every digits should be in [0,1), and last digit must be 0.
- if self.dropout_structure is None:
- self.dropout_structure = parse_dropout_structure(self.layer_structure, self.use_dropout, self.last_layer_dropout)
- if shared.opts.print_hypernet_extra:
- if self.optional_info is not None:
- print(f" INFO:\n {self.optional_info}\n")
- print(f" Layer structure: {self.layer_structure}")
- print(f" Activation function: {self.activation_func}")
- print(f" Weight initialization: {self.weight_init}")
- print(f" Layer norm: {self.add_layer_norm}")
- print(f" Dropout usage: {self.use_dropout}" )
- print(f" Activate last layer: {self.activate_output}")
- print(f" Dropout structure: {self.dropout_structure}")
- optimizer_saved_dict = torch.load(self.filename + '.optim', map_location='cpu') if os.path.exists(self.filename + '.optim') else {}
- if self.shorthash() == optimizer_saved_dict.get('hash', None):
- self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
- else:
- self.optimizer_state_dict = None
- if self.optimizer_state_dict:
- self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')
- if shared.opts.print_hypernet_extra:
- print("Loaded existing optimizer from checkpoint")
- print(f"Optimizer name is {self.optimizer_name}")
- else:
- self.optimizer_name = "AdamW"
- if shared.opts.print_hypernet_extra:
- print("No saved optimizer exists in checkpoint")
- for size, sd in state_dict.items():
- if type(size) == int:
- self.layers[size] = (
- HypernetworkModule(size, sd[0], self.layer_structure, self.activation_func, self.weight_init,
- self.add_layer_norm, self.activate_output, self.dropout_structure),
- HypernetworkModule(size, sd[1], self.layer_structure, self.activation_func, self.weight_init,
- self.add_layer_norm, self.activate_output, self.dropout_structure),
- )
- self.name = state_dict.get('name', self.name)
- self.step = state_dict.get('step', 0)
- self.sd_checkpoint = state_dict.get('sd_checkpoint', None)
- self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None)
- self.eval()
- def shorthash(self):
- sha256 = hashes.sha256(self.filename, f'hypernet/{self.name}')
- return sha256[0:10] if sha256 else None
- def list_hypernetworks(path):
- res = {}
- for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True), key=str.lower):
- name = os.path.splitext(os.path.basename(filename))[0]
- # Prevent a hypothetical "None.pt" from being listed.
- if name != "None":
- res[name] = filename
- return res
- def load_hypernetwork(name):
- path = shared.hypernetworks.get(name, None)
- if path is None:
- return None
- try:
- hypernetwork = Hypernetwork()
- hypernetwork.load(path)
- return hypernetwork
- except Exception:
- errors.report(f"Error loading hypernetwork {path}", exc_info=True)
- return None
- def load_hypernetworks(names, multipliers=None):
- already_loaded = {}
- for hypernetwork in shared.loaded_hypernetworks:
- if hypernetwork.name in names:
- already_loaded[hypernetwork.name] = hypernetwork
- shared.loaded_hypernetworks.clear()
- for i, name in enumerate(names):
- hypernetwork = already_loaded.get(name, None)
- if hypernetwork is None:
- hypernetwork = load_hypernetwork(name)
- if hypernetwork is None:
- continue
- hypernetwork.set_multiplier(multipliers[i] if multipliers else 1.0)
- shared.loaded_hypernetworks.append(hypernetwork)
- def apply_single_hypernetwork(hypernetwork, context_k, context_v, layer=None):
- hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context_k.shape[2], None)
- if hypernetwork_layers is None:
- return context_k, context_v
- if layer is not None:
- layer.hyper_k = hypernetwork_layers[0]
- layer.hyper_v = hypernetwork_layers[1]
- context_k = devices.cond_cast_unet(hypernetwork_layers[0](devices.cond_cast_float(context_k)))
- context_v = devices.cond_cast_unet(hypernetwork_layers[1](devices.cond_cast_float(context_v)))
- return context_k, context_v
- def apply_hypernetworks(hypernetworks, context, layer=None):
- context_k = context
- context_v = context
- for hypernetwork in hypernetworks:
- context_k, context_v = apply_single_hypernetwork(hypernetwork, context_k, context_v, layer)
- return context_k, context_v
- def attention_CrossAttention_forward(self, x, context=None, mask=None, **kwargs):
- h = self.heads
- q = self.to_q(x)
- context = default(context, x)
- context_k, context_v = apply_hypernetworks(shared.loaded_hypernetworks, context, self)
- k = self.to_k(context_k)
- v = self.to_v(context_v)
- q, k, v = (rearrange(t, 'b n (h d) -> (b h) n d', h=h) for t in (q, k, v))
- sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
- if mask is not None:
- mask = rearrange(mask, 'b ... -> b (...)')
- max_neg_value = -torch.finfo(sim.dtype).max
- mask = repeat(mask, 'b j -> (b h) () j', h=h)
- sim.masked_fill_(~mask, max_neg_value)
- # attention, what we cannot get enough of
- attn = sim.softmax(dim=-1)
- out = einsum('b i j, b j d -> b i d', attn, v)
- out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
- return self.to_out(out)
- def stack_conds(conds):
- if len(conds) == 1:
- return torch.stack(conds)
- # same as in reconstruct_multicond_batch
- token_count = max([x.shape[0] for x in conds])
- for i in range(len(conds)):
- if conds[i].shape[0] != token_count:
- last_vector = conds[i][-1:]
- last_vector_repeated = last_vector.repeat([token_count - conds[i].shape[0], 1])
- conds[i] = torch.vstack([conds[i], last_vector_repeated])
- return torch.stack(conds)
- def statistics(data):
- if len(data) < 2:
- std = 0
- else:
- std = stdev(data)
- total_information = f"loss:{mean(data):.3f}" + u"\u00B1" + f"({std/ (len(data) ** 0.5):.3f})"
- recent_data = data[-32:]
- if len(recent_data) < 2:
- std = 0
- else:
- std = stdev(recent_data)
- recent_information = f"recent 32 loss:{mean(recent_data):.3f}" + u"\u00B1" + f"({std / (len(recent_data) ** 0.5):.3f})"
- return total_information, recent_information
- def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False, dropout_structure=None):
- # Remove illegal characters from name.
- name = "".join( x for x in name if (x.isalnum() or x in "._- "))
- assert name, "Name cannot be empty!"
- fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt")
- if not overwrite_old:
- assert not os.path.exists(fn), f"file {fn} already exists"
- if type(layer_structure) == str:
- layer_structure = [float(x.strip()) for x in layer_structure.split(",")]
- if use_dropout and dropout_structure and type(dropout_structure) == str:
- dropout_structure = [float(x.strip()) for x in dropout_structure.split(",")]
- else:
- dropout_structure = [0] * len(layer_structure)
- hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(
- name=name,
- enable_sizes=[int(x) for x in enable_sizes],
- layer_structure=layer_structure,
- activation_func=activation_func,
- weight_init=weight_init,
- add_layer_norm=add_layer_norm,
- use_dropout=use_dropout,
- dropout_structure=dropout_structure
- )
- hypernet.save(fn)
- shared.reload_hypernetworks()
- def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
- # images allows training previews to have infotext. Importing it at the top causes a circular import problem.
- from modules import images
- save_hypernetwork_every = save_hypernetwork_every or 0
- create_image_every = create_image_every or 0
- template_file = textual_inversion.textual_inversion_templates.get(template_filename, None)
- textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, template_file, template_filename, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
- template_file = template_file.path
- path = shared.hypernetworks.get(hypernetwork_name, None)
- hypernetwork = Hypernetwork()
- hypernetwork.load(path)
- shared.loaded_hypernetworks = [hypernetwork]
- shared.state.job = "train-hypernetwork"
- shared.state.textinfo = "Initializing hypernetwork training..."
- shared.state.job_count = steps
- hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]
- filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
- log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
- unload = shared.opts.unload_models_when_training
- if save_hypernetwork_every > 0:
- hypernetwork_dir = os.path.join(log_directory, "hypernetworks")
- os.makedirs(hypernetwork_dir, exist_ok=True)
- else:
- hypernetwork_dir = None
- if create_image_every > 0:
- images_dir = os.path.join(log_directory, "images")
- os.makedirs(images_dir, exist_ok=True)
- else:
- images_dir = None
- checkpoint = sd_models.select_checkpoint()
- initial_step = hypernetwork.step or 0
- if initial_step >= steps:
- shared.state.textinfo = "Model has already been trained beyond specified max steps"
- return hypernetwork, filename
- scheduler = LearnRateScheduler(learn_rate, steps, initial_step)
- clip_grad = torch.nn.utils.clip_grad_value_ if clip_grad_mode == "value" else torch.nn.utils.clip_grad_norm_ if clip_grad_mode == "norm" else None
- if clip_grad:
- clip_grad_sched = LearnRateScheduler(clip_grad_value, steps, initial_step, verbose=False)
- if shared.opts.training_enable_tensorboard:
- tensorboard_writer = textual_inversion.tensorboard_setup(log_directory)
- # dataset loading may take a while, so input validations and early returns should be done before this
- shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
- pin_memory = shared.opts.pin_memory
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method, varsize=varsize, use_weight=use_weight)
- if shared.opts.save_training_settings_to_txt:
- saved_params = dict(
- model_name=checkpoint.model_name, model_hash=checkpoint.shorthash, num_of_dataset_images=len(ds),
- **{field: getattr(hypernetwork, field) for field in ['layer_structure', 'activation_func', 'weight_init', 'add_layer_norm', 'use_dropout', ]}
- )
- logging.save_settings_to_file(log_directory, {**saved_params, **locals()})
- latent_sampling_method = ds.latent_sampling_method
- dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
- old_parallel_processing_allowed = shared.parallel_processing_allowed
- if unload:
- shared.parallel_processing_allowed = False
- shared.sd_model.cond_stage_model.to(devices.cpu)
- shared.sd_model.first_stage_model.to(devices.cpu)
- weights = hypernetwork.weights()
- hypernetwork.train()
- # Here we use optimizer from saved HN, or we can specify as UI option.
- if hypernetwork.optimizer_name in optimizer_dict:
- optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate)
- optimizer_name = hypernetwork.optimizer_name
- else:
- print(f"Optimizer type {hypernetwork.optimizer_name} is not defined!")
- optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
- optimizer_name = 'AdamW'
- if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer.
- try:
- optimizer.load_state_dict(hypernetwork.optimizer_state_dict)
- except RuntimeError as e:
- print("Cannot resume from saved optimizer!")
- print(e)
- scaler = torch.cuda.amp.GradScaler()
- batch_size = ds.batch_size
- gradient_step = ds.gradient_step
- # n steps = batch_size * gradient_step * n image processed
- steps_per_epoch = len(ds) // batch_size // gradient_step
- max_steps_per_epoch = len(ds) // batch_size - (len(ds) // batch_size) % gradient_step
- loss_step = 0
- _loss_step = 0 #internal
- # size = len(ds.indexes)
- # loss_dict = defaultdict(lambda : deque(maxlen = 1024))
- loss_logging = deque(maxlen=len(ds) * 3) # this should be configurable parameter, this is 3 * epoch(dataset size)
- # losses = torch.zeros((size,))
- # previous_mean_losses = [0]
- # previous_mean_loss = 0
- # print("Mean loss of {} elements".format(size))
- steps_without_grad = 0
- last_saved_file = "<none>"
- last_saved_image = "<none>"
- forced_filename = "<none>"
- pbar = tqdm.tqdm(total=steps - initial_step)
- try:
- sd_hijack_checkpoint.add()
- for _ in range((steps-initial_step) * gradient_step):
- if scheduler.finished:
- break
- if shared.state.interrupted:
- break
- for j, batch in enumerate(dl):
- # works as a drop_last=True for gradient accumulation
- if j == max_steps_per_epoch:
- break
- scheduler.apply(optimizer, hypernetwork.step)
- if scheduler.finished:
- break
- if shared.state.interrupted:
- break
- if clip_grad:
- clip_grad_sched.step(hypernetwork.step)
- with devices.autocast():
- x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
- if use_weight:
- w = batch.weight.to(devices.device, non_blocking=pin_memory)
- if tag_drop_out != 0 or shuffle_tags:
- shared.sd_model.cond_stage_model.to(devices.device)
- c = shared.sd_model.cond_stage_model(batch.cond_text).to(devices.device, non_blocking=pin_memory)
- shared.sd_model.cond_stage_model.to(devices.cpu)
- else:
- c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory)
- if use_weight:
- loss = shared.sd_model.weighted_forward(x, c, w)[0] / gradient_step
- del w
- else:
- loss = shared.sd_model.forward(x, c)[0] / gradient_step
- del x
- del c
- _loss_step += loss.item()
- scaler.scale(loss).backward()
- # go back until we reach gradient accumulation steps
- if (j + 1) % gradient_step != 0:
- continue
- loss_logging.append(_loss_step)
- if clip_grad:
- clip_grad(weights, clip_grad_sched.learn_rate)
- scaler.step(optimizer)
- scaler.update()
- hypernetwork.step += 1
- pbar.update()
- optimizer.zero_grad(set_to_none=True)
- loss_step = _loss_step
- _loss_step = 0
- steps_done = hypernetwork.step + 1
- epoch_num = hypernetwork.step // steps_per_epoch
- epoch_step = hypernetwork.step % steps_per_epoch
- description = f"Training hypernetwork [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}"
- pbar.set_description(description)
- if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
- # Before saving, change name to match current checkpoint.
- hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
- last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
- hypernetwork.optimizer_name = optimizer_name
- if shared.opts.save_optimizer_state:
- hypernetwork.optimizer_state_dict = optimizer.state_dict()
- save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
- hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
- if shared.opts.training_enable_tensorboard:
- epoch_num = hypernetwork.step // len(ds)
- epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1
- mean_loss = sum(loss_logging) / len(loss_logging)
- textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num)
- textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {
- "loss": f"{loss_step:.7f}",
- "learn_rate": scheduler.learn_rate
- })
- if images_dir is not None and steps_done % create_image_every == 0:
- forced_filename = f'{hypernetwork_name}-{steps_done}'
- last_saved_image = os.path.join(images_dir, forced_filename)
- hypernetwork.eval()
- rng_state = torch.get_rng_state()
- cuda_rng_state = None
- if torch.cuda.is_available():
- cuda_rng_state = torch.cuda.get_rng_state_all()
- shared.sd_model.cond_stage_model.to(devices.device)
- shared.sd_model.first_stage_model.to(devices.device)
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- )
- p.disable_extra_networks = True
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_name = sd_samplers.samplers[preview_sampler_index].name
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = batch.cond_text[0]
- p.steps = 20
- p.width = training_width
- p.height = training_height
- preview_text = p.prompt
- with closing(p):
- processed = processing.process_images(p)
- image = processed.images[0] if len(processed.images) > 0 else None
- if unload:
- shared.sd_model.cond_stage_model.to(devices.cpu)
- shared.sd_model.first_stage_model.to(devices.cpu)
- torch.set_rng_state(rng_state)
- if torch.cuda.is_available():
- torch.cuda.set_rng_state_all(cuda_rng_state)
- hypernetwork.train()
- if image is not None:
- shared.state.assign_current_image(image)
- if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images:
- textual_inversion.tensorboard_add_image(tensorboard_writer,
- f"Validation at epoch {epoch_num}", image,
- hypernetwork.step)
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
- last_saved_image += f", prompt: {preview_text}"
- shared.state.job_no = hypernetwork.step
- shared.state.textinfo = f"""
- <p>
- Loss: {loss_step:.7f}<br/>
- Step: {steps_done}<br/>
- Last prompt: {html.escape(batch.cond_text[0])}<br/>
- Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
- Last saved image: {html.escape(last_saved_image)}<br/>
- </p>
- """
- except Exception:
- errors.report("Exception in training hypernetwork", exc_info=True)
- finally:
- pbar.leave = False
- pbar.close()
- hypernetwork.eval()
- sd_hijack_checkpoint.remove()
- filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
- hypernetwork.optimizer_name = optimizer_name
- if shared.opts.save_optimizer_state:
- hypernetwork.optimizer_state_dict = optimizer.state_dict()
- save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
- del optimizer
- hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
- shared.sd_model.cond_stage_model.to(devices.device)
- shared.sd_model.first_stage_model.to(devices.device)
- shared.parallel_processing_allowed = old_parallel_processing_allowed
- return hypernetwork, filename
- def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
- old_hypernetwork_name = hypernetwork.name
- old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None
- old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None
- try:
- hypernetwork.sd_checkpoint = checkpoint.shorthash
- hypernetwork.sd_checkpoint_name = checkpoint.model_name
- hypernetwork.name = hypernetwork_name
- hypernetwork.save(filename)
- except:
- hypernetwork.sd_checkpoint = old_sd_checkpoint
- hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name
- hypernetwork.name = old_hypernetwork_name
- raise
|