123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303 |
- import os
- import re
- import shutil
- import json
- import torch
- import tqdm
- from modules import shared, images, sd_models, sd_vae, sd_models_config
- from modules.ui_common import plaintext_to_html
- import gradio as gr
- import safetensors.torch
- def run_pnginfo(image):
- if image is None:
- return '', '', ''
- geninfo, items = images.read_info_from_image(image)
- items = {**{'parameters': geninfo}, **items}
- info = ''
- for key, text in items.items():
- info += f"""
- <div>
- <p><b>{plaintext_to_html(str(key))}</b></p>
- <p>{plaintext_to_html(str(text))}</p>
- </div>
- """.strip()+"\n"
- if len(info) == 0:
- message = "Nothing found in the image."
- info = f"<div><p>{message}<p></div>"
- return '', geninfo, info
- def create_config(ckpt_result, config_source, a, b, c):
- def config(x):
- res = sd_models_config.find_checkpoint_config_near_filename(x) if x else None
- return res if res != shared.sd_default_config else None
- if config_source == 0:
- cfg = config(a) or config(b) or config(c)
- elif config_source == 1:
- cfg = config(b)
- elif config_source == 2:
- cfg = config(c)
- else:
- cfg = None
- if cfg is None:
- return
- filename, _ = os.path.splitext(ckpt_result)
- checkpoint_filename = filename + ".yaml"
- print("Copying config:")
- print(" from:", cfg)
- print(" to:", checkpoint_filename)
- shutil.copyfile(cfg, checkpoint_filename)
- checkpoint_dict_skip_on_merge = ["cond_stage_model.transformer.text_model.embeddings.position_ids"]
- def to_half(tensor, enable):
- if enable and tensor.dtype == torch.float:
- return tensor.half()
- return tensor
- def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata):
- shared.state.begin(job="model-merge")
- def fail(message):
- shared.state.textinfo = message
- shared.state.end()
- return [*[gr.update() for _ in range(4)], message]
- def weighted_sum(theta0, theta1, alpha):
- return ((1 - alpha) * theta0) + (alpha * theta1)
- def get_difference(theta1, theta2):
- return theta1 - theta2
- def add_difference(theta0, theta1_2_diff, alpha):
- return theta0 + (alpha * theta1_2_diff)
- def filename_weighted_sum():
- a = primary_model_info.model_name
- b = secondary_model_info.model_name
- Ma = round(1 - multiplier, 2)
- Mb = round(multiplier, 2)
- return f"{Ma}({a}) + {Mb}({b})"
- def filename_add_difference():
- a = primary_model_info.model_name
- b = secondary_model_info.model_name
- c = tertiary_model_info.model_name
- M = round(multiplier, 2)
- return f"{a} + {M}({b} - {c})"
- def filename_nothing():
- return primary_model_info.model_name
- theta_funcs = {
- "Weighted sum": (filename_weighted_sum, None, weighted_sum),
- "Add difference": (filename_add_difference, get_difference, add_difference),
- "No interpolation": (filename_nothing, None, None),
- }
- filename_generator, theta_func1, theta_func2 = theta_funcs[interp_method]
- shared.state.job_count = (1 if theta_func1 else 0) + (1 if theta_func2 else 0)
- if not primary_model_name:
- return fail("Failed: Merging requires a primary model.")
- primary_model_info = sd_models.checkpoints_list[primary_model_name]
- if theta_func2 and not secondary_model_name:
- return fail("Failed: Merging requires a secondary model.")
- secondary_model_info = sd_models.checkpoints_list[secondary_model_name] if theta_func2 else None
- if theta_func1 and not tertiary_model_name:
- return fail(f"Failed: Interpolation method ({interp_method}) requires a tertiary model.")
- tertiary_model_info = sd_models.checkpoints_list[tertiary_model_name] if theta_func1 else None
- result_is_inpainting_model = False
- result_is_instruct_pix2pix_model = False
- if theta_func2:
- shared.state.textinfo = "Loading B"
- print(f"Loading {secondary_model_info.filename}...")
- theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu')
- else:
- theta_1 = None
- if theta_func1:
- shared.state.textinfo = "Loading C"
- print(f"Loading {tertiary_model_info.filename}...")
- theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu')
- shared.state.textinfo = 'Merging B and C'
- shared.state.sampling_steps = len(theta_1.keys())
- for key in tqdm.tqdm(theta_1.keys()):
- if key in checkpoint_dict_skip_on_merge:
- continue
- if 'model' in key:
- if key in theta_2:
- t2 = theta_2.get(key, torch.zeros_like(theta_1[key]))
- theta_1[key] = theta_func1(theta_1[key], t2)
- else:
- theta_1[key] = torch.zeros_like(theta_1[key])
- shared.state.sampling_step += 1
- del theta_2
- shared.state.nextjob()
- shared.state.textinfo = f"Loading {primary_model_info.filename}..."
- print(f"Loading {primary_model_info.filename}...")
- theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
- print("Merging...")
- shared.state.textinfo = 'Merging A and B'
- shared.state.sampling_steps = len(theta_0.keys())
- for key in tqdm.tqdm(theta_0.keys()):
- if theta_1 and 'model' in key and key in theta_1:
- if key in checkpoint_dict_skip_on_merge:
- continue
- a = theta_0[key]
- b = theta_1[key]
- # this enables merging an inpainting model (A) with another one (B);
- # where normal model would have 4 channels, for latenst space, inpainting model would
- # have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
- if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]:
- if a.shape[1] == 4 and b.shape[1] == 9:
- raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")
- if a.shape[1] == 4 and b.shape[1] == 8:
- raise RuntimeError("When merging instruct-pix2pix model with a normal one, A must be the instruct-pix2pix model.")
- if a.shape[1] == 8 and b.shape[1] == 4:#If we have an Instruct-Pix2Pix model...
- theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)#Merge only the vectors the models have in common. Otherwise we get an error due to dimension mismatch.
- result_is_instruct_pix2pix_model = True
- else:
- assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
- theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
- result_is_inpainting_model = True
- else:
- theta_0[key] = theta_func2(a, b, multiplier)
- theta_0[key] = to_half(theta_0[key], save_as_half)
- shared.state.sampling_step += 1
- del theta_1
- bake_in_vae_filename = sd_vae.vae_dict.get(bake_in_vae, None)
- if bake_in_vae_filename is not None:
- print(f"Baking in VAE from {bake_in_vae_filename}")
- shared.state.textinfo = 'Baking in VAE'
- vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename, map_location='cpu')
- for key in vae_dict.keys():
- theta_0_key = 'first_stage_model.' + key
- if theta_0_key in theta_0:
- theta_0[theta_0_key] = to_half(vae_dict[key], save_as_half)
- del vae_dict
- if save_as_half and not theta_func2:
- for key in theta_0.keys():
- theta_0[key] = to_half(theta_0[key], save_as_half)
- if discard_weights:
- regex = re.compile(discard_weights)
- for key in list(theta_0):
- if re.search(regex, key):
- theta_0.pop(key, None)
- ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
- filename = filename_generator() if custom_name == '' else custom_name
- filename += ".inpainting" if result_is_inpainting_model else ""
- filename += ".instruct-pix2pix" if result_is_instruct_pix2pix_model else ""
- filename += "." + checkpoint_format
- output_modelname = os.path.join(ckpt_dir, filename)
- shared.state.nextjob()
- shared.state.textinfo = "Saving"
- print(f"Saving to {output_modelname}...")
- metadata = None
- if save_metadata:
- metadata = {"format": "pt"}
- merge_recipe = {
- "type": "webui", # indicate this model was merged with webui's built-in merger
- "primary_model_hash": primary_model_info.sha256,
- "secondary_model_hash": secondary_model_info.sha256 if secondary_model_info else None,
- "tertiary_model_hash": tertiary_model_info.sha256 if tertiary_model_info else None,
- "interp_method": interp_method,
- "multiplier": multiplier,
- "save_as_half": save_as_half,
- "custom_name": custom_name,
- "config_source": config_source,
- "bake_in_vae": bake_in_vae,
- "discard_weights": discard_weights,
- "is_inpainting": result_is_inpainting_model,
- "is_instruct_pix2pix": result_is_instruct_pix2pix_model
- }
- metadata["sd_merge_recipe"] = json.dumps(merge_recipe)
- sd_merge_models = {}
- def add_model_metadata(checkpoint_info):
- checkpoint_info.calculate_shorthash()
- sd_merge_models[checkpoint_info.sha256] = {
- "name": checkpoint_info.name,
- "legacy_hash": checkpoint_info.hash,
- "sd_merge_recipe": checkpoint_info.metadata.get("sd_merge_recipe", None)
- }
- sd_merge_models.update(checkpoint_info.metadata.get("sd_merge_models", {}))
- add_model_metadata(primary_model_info)
- if secondary_model_info:
- add_model_metadata(secondary_model_info)
- if tertiary_model_info:
- add_model_metadata(tertiary_model_info)
- metadata["sd_merge_models"] = json.dumps(sd_merge_models)
- _, extension = os.path.splitext(output_modelname)
- if extension.lower() == ".safetensors":
- safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata)
- else:
- torch.save(theta_0, output_modelname)
- sd_models.list_models()
- created_model = next((ckpt for ckpt in sd_models.checkpoints_list.values() if ckpt.name == filename), None)
- if created_model:
- created_model.calculate_shorthash()
- create_config(output_modelname, config_source, primary_model_info, secondary_model_info, tertiary_model_info)
- print(f"Checkpoint saved to {output_modelname}.")
- shared.state.textinfo = "Checkpoint saved"
- shared.state.end()
- return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], "Checkpoint saved to " + output_modelname]
|