123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863 |
- import torch
- import math
- import tqdm
- class NoiseScheduleVP:
- def __init__(
- self,
- schedule='discrete',
- betas=None,
- alphas_cumprod=None,
- continuous_beta_0=0.1,
- continuous_beta_1=20.,
- ):
- """Create a wrapper class for the forward SDE (VP type).
- ***
- Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
- We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
- ***
- The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
- We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
- Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
- log_alpha_t = self.marginal_log_mean_coeff(t)
- sigma_t = self.marginal_std(t)
- lambda_t = self.marginal_lambda(t)
- Moreover, as lambda(t) is an invertible function, we also support its inverse function:
- t = self.inverse_lambda(lambda_t)
- ===============================================================
- We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
- 1. For discrete-time DPMs:
- For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
- t_i = (i + 1) / N
- e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
- We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
- Args:
- betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
- alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
- Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
- **Important**: Please pay special attention for the args for `alphas_cumprod`:
- The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
- q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
- Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
- alpha_{t_n} = \sqrt{\hat{alpha_n}},
- and
- log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
- 2. For continuous-time DPMs:
- We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
- schedule are the default settings in DDPM and improved-DDPM:
- Args:
- beta_min: A `float` number. The smallest beta for the linear schedule.
- beta_max: A `float` number. The largest beta for the linear schedule.
- cosine_s: A `float` number. The hyperparameter in the cosine schedule.
- cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
- T: A `float` number. The ending time of the forward process.
- ===============================================================
- Args:
- schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
- 'linear' or 'cosine' for continuous-time DPMs.
- Returns:
- A wrapper object of the forward SDE (VP type).
- ===============================================================
- Example:
- # For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
- >>> ns = NoiseScheduleVP('discrete', betas=betas)
- # For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
- >>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
- # For continuous-time DPMs (VPSDE), linear schedule:
- >>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
- """
- if schedule not in ['discrete', 'linear', 'cosine']:
- raise ValueError(f"Unsupported noise schedule {schedule}. The schedule needs to be 'discrete' or 'linear' or 'cosine'")
- self.schedule = schedule
- if schedule == 'discrete':
- if betas is not None:
- log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
- else:
- assert alphas_cumprod is not None
- log_alphas = 0.5 * torch.log(alphas_cumprod)
- self.total_N = len(log_alphas)
- self.T = 1.
- self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
- self.log_alpha_array = log_alphas.reshape((1, -1,))
- else:
- self.total_N = 1000
- self.beta_0 = continuous_beta_0
- self.beta_1 = continuous_beta_1
- self.cosine_s = 0.008
- self.cosine_beta_max = 999.
- self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
- self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
- self.schedule = schedule
- if schedule == 'cosine':
- # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
- # Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
- self.T = 0.9946
- else:
- self.T = 1.
- def marginal_log_mean_coeff(self, t):
- """
- Compute log(alpha_t) of a given continuous-time label t in [0, T].
- """
- if self.schedule == 'discrete':
- return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
- elif self.schedule == 'linear':
- return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
- elif self.schedule == 'cosine':
- log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
- log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
- return log_alpha_t
- def marginal_alpha(self, t):
- """
- Compute alpha_t of a given continuous-time label t in [0, T].
- """
- return torch.exp(self.marginal_log_mean_coeff(t))
- def marginal_std(self, t):
- """
- Compute sigma_t of a given continuous-time label t in [0, T].
- """
- return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
- def marginal_lambda(self, t):
- """
- Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
- """
- log_mean_coeff = self.marginal_log_mean_coeff(t)
- log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
- return log_mean_coeff - log_std
- def inverse_lambda(self, lamb):
- """
- Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
- """
- if self.schedule == 'linear':
- tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
- Delta = self.beta_0**2 + tmp
- return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
- elif self.schedule == 'discrete':
- log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
- t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
- return t.reshape((-1,))
- else:
- log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
- t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
- t = t_fn(log_alpha)
- return t
- def model_wrapper(
- model,
- noise_schedule,
- model_type="noise",
- model_kwargs=None,
- guidance_type="uncond",
- #condition=None,
- #unconditional_condition=None,
- guidance_scale=1.,
- classifier_fn=None,
- classifier_kwargs=None,
- ):
- """Create a wrapper function for the noise prediction model.
- DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
- firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
- We support four types of the diffusion model by setting `model_type`:
- 1. "noise": noise prediction model. (Trained by predicting noise).
- 2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
- 3. "v": velocity prediction model. (Trained by predicting the velocity).
- The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
- [1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
- arXiv preprint arXiv:2202.00512 (2022).
- [2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
- arXiv preprint arXiv:2210.02303 (2022).
- 4. "score": marginal score function. (Trained by denoising score matching).
- Note that the score function and the noise prediction model follows a simple relationship:
- ```
- noise(x_t, t) = -sigma_t * score(x_t, t)
- ```
- We support three types of guided sampling by DPMs by setting `guidance_type`:
- 1. "uncond": unconditional sampling by DPMs.
- The input `model` has the following format:
- ``
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
- ``
- 2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
- The input `model` has the following format:
- ``
- model(x, t_input, **model_kwargs) -> noise | x_start | v | score
- ``
- The input `classifier_fn` has the following format:
- ``
- classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
- ``
- [3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
- in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
- 3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
- The input `model` has the following format:
- ``
- model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
- ``
- And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
- [4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
- arXiv preprint arXiv:2207.12598 (2022).
- The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
- or continuous-time labels (i.e. epsilon to T).
- We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
- ``
- def model_fn(x, t_continuous) -> noise:
- t_input = get_model_input_time(t_continuous)
- return noise_pred(model, x, t_input, **model_kwargs)
- ``
- where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
- ===============================================================
- Args:
- model: A diffusion model with the corresponding format described above.
- noise_schedule: A noise schedule object, such as NoiseScheduleVP.
- model_type: A `str`. The parameterization type of the diffusion model.
- "noise" or "x_start" or "v" or "score".
- model_kwargs: A `dict`. A dict for the other inputs of the model function.
- guidance_type: A `str`. The type of the guidance for sampling.
- "uncond" or "classifier" or "classifier-free".
- condition: A pytorch tensor. The condition for the guided sampling.
- Only used for "classifier" or "classifier-free" guidance type.
- unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
- Only used for "classifier-free" guidance type.
- guidance_scale: A `float`. The scale for the guided sampling.
- classifier_fn: A classifier function. Only used for the classifier guidance.
- classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
- Returns:
- A noise prediction model that accepts the noised data and the continuous time as the inputs.
- """
- model_kwargs = model_kwargs or {}
- classifier_kwargs = classifier_kwargs or {}
- def get_model_input_time(t_continuous):
- """
- Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
- For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
- For continuous-time DPMs, we just use `t_continuous`.
- """
- if noise_schedule.schedule == 'discrete':
- return (t_continuous - 1. / noise_schedule.total_N) * 1000.
- else:
- return t_continuous
- def noise_pred_fn(x, t_continuous, cond=None):
- if t_continuous.reshape((-1,)).shape[0] == 1:
- t_continuous = t_continuous.expand((x.shape[0]))
- t_input = get_model_input_time(t_continuous)
- if cond is None:
- output = model(x, t_input, None, **model_kwargs)
- else:
- output = model(x, t_input, cond, **model_kwargs)
- if model_type == "noise":
- return output
- elif model_type == "x_start":
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
- dims = x.dim()
- return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
- elif model_type == "v":
- alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
- dims = x.dim()
- return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
- elif model_type == "score":
- sigma_t = noise_schedule.marginal_std(t_continuous)
- dims = x.dim()
- return -expand_dims(sigma_t, dims) * output
- def cond_grad_fn(x, t_input, condition):
- """
- Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
- """
- with torch.enable_grad():
- x_in = x.detach().requires_grad_(True)
- log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
- return torch.autograd.grad(log_prob.sum(), x_in)[0]
- def model_fn(x, t_continuous, condition, unconditional_condition):
- """
- The noise predicition model function that is used for DPM-Solver.
- """
- if t_continuous.reshape((-1,)).shape[0] == 1:
- t_continuous = t_continuous.expand((x.shape[0]))
- if guidance_type == "uncond":
- return noise_pred_fn(x, t_continuous)
- elif guidance_type == "classifier":
- assert classifier_fn is not None
- t_input = get_model_input_time(t_continuous)
- cond_grad = cond_grad_fn(x, t_input, condition)
- sigma_t = noise_schedule.marginal_std(t_continuous)
- noise = noise_pred_fn(x, t_continuous)
- return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
- elif guidance_type == "classifier-free":
- if guidance_scale == 1. or unconditional_condition is None:
- return noise_pred_fn(x, t_continuous, cond=condition)
- else:
- x_in = torch.cat([x] * 2)
- t_in = torch.cat([t_continuous] * 2)
- if isinstance(condition, dict):
- assert isinstance(unconditional_condition, dict)
- c_in = {}
- for k in condition:
- if isinstance(condition[k], list):
- c_in[k] = [torch.cat([
- unconditional_condition[k][i],
- condition[k][i]]) for i in range(len(condition[k]))]
- else:
- c_in[k] = torch.cat([
- unconditional_condition[k],
- condition[k]])
- elif isinstance(condition, list):
- c_in = []
- assert isinstance(unconditional_condition, list)
- for i in range(len(condition)):
- c_in.append(torch.cat([unconditional_condition[i], condition[i]]))
- else:
- c_in = torch.cat([unconditional_condition, condition])
- noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
- return noise_uncond + guidance_scale * (noise - noise_uncond)
- assert model_type in ["noise", "x_start", "v"]
- assert guidance_type in ["uncond", "classifier", "classifier-free"]
- return model_fn
- class UniPC:
- def __init__(
- self,
- model_fn,
- noise_schedule,
- predict_x0=True,
- thresholding=False,
- max_val=1.,
- variant='bh1',
- condition=None,
- unconditional_condition=None,
- before_sample=None,
- after_sample=None,
- after_update=None
- ):
- """Construct a UniPC.
- We support both data_prediction and noise_prediction.
- """
- self.model_fn_ = model_fn
- self.noise_schedule = noise_schedule
- self.variant = variant
- self.predict_x0 = predict_x0
- self.thresholding = thresholding
- self.max_val = max_val
- self.condition = condition
- self.unconditional_condition = unconditional_condition
- self.before_sample = before_sample
- self.after_sample = after_sample
- self.after_update = after_update
- def dynamic_thresholding_fn(self, x0, t=None):
- """
- The dynamic thresholding method.
- """
- dims = x0.dim()
- p = self.dynamic_thresholding_ratio
- s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
- s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
- x0 = torch.clamp(x0, -s, s) / s
- return x0
- def model(self, x, t):
- cond = self.condition
- uncond = self.unconditional_condition
- if self.before_sample is not None:
- x, t, cond, uncond = self.before_sample(x, t, cond, uncond)
- res = self.model_fn_(x, t, cond, uncond)
- if self.after_sample is not None:
- x, t, cond, uncond, res = self.after_sample(x, t, cond, uncond, res)
- if isinstance(res, tuple):
- # (None, pred_x0)
- res = res[1]
- return res
- def noise_prediction_fn(self, x, t):
- """
- Return the noise prediction model.
- """
- return self.model(x, t)
- def data_prediction_fn(self, x, t):
- """
- Return the data prediction model (with thresholding).
- """
- noise = self.noise_prediction_fn(x, t)
- dims = x.dim()
- alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
- x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
- if self.thresholding:
- p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
- s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
- s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
- x0 = torch.clamp(x0, -s, s) / s
- return x0
- def model_fn(self, x, t):
- """
- Convert the model to the noise prediction model or the data prediction model.
- """
- if self.predict_x0:
- return self.data_prediction_fn(x, t)
- else:
- return self.noise_prediction_fn(x, t)
- def get_time_steps(self, skip_type, t_T, t_0, N, device):
- """Compute the intermediate time steps for sampling.
- """
- if skip_type == 'logSNR':
- lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
- lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
- logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
- return self.noise_schedule.inverse_lambda(logSNR_steps)
- elif skip_type == 'time_uniform':
- return torch.linspace(t_T, t_0, N + 1).to(device)
- elif skip_type == 'time_quadratic':
- t_order = 2
- t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
- return t
- else:
- raise ValueError(f"Unsupported skip_type {skip_type}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'")
- def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
- """
- Get the order of each step for sampling by the singlestep DPM-Solver.
- """
- if order == 3:
- K = steps // 3 + 1
- if steps % 3 == 0:
- orders = [3,] * (K - 2) + [2, 1]
- elif steps % 3 == 1:
- orders = [3,] * (K - 1) + [1]
- else:
- orders = [3,] * (K - 1) + [2]
- elif order == 2:
- if steps % 2 == 0:
- K = steps // 2
- orders = [2,] * K
- else:
- K = steps // 2 + 1
- orders = [2,] * (K - 1) + [1]
- elif order == 1:
- K = steps
- orders = [1,] * steps
- else:
- raise ValueError("'order' must be '1' or '2' or '3'.")
- if skip_type == 'logSNR':
- # To reproduce the results in DPM-Solver paper
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
- else:
- timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
- return timesteps_outer, orders
- def denoise_to_zero_fn(self, x, s):
- """
- Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
- """
- return self.data_prediction_fn(x, s)
- def multistep_uni_pc_update(self, x, model_prev_list, t_prev_list, t, order, **kwargs):
- if len(t.shape) == 0:
- t = t.view(-1)
- if 'bh' in self.variant:
- return self.multistep_uni_pc_bh_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
- else:
- assert self.variant == 'vary_coeff'
- return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
- def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
- #print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
- ns = self.noise_schedule
- assert order <= len(model_prev_list)
- # first compute rks
- t_prev_0 = t_prev_list[-1]
- lambda_prev_0 = ns.marginal_lambda(t_prev_0)
- lambda_t = ns.marginal_lambda(t)
- model_prev_0 = model_prev_list[-1]
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
- log_alpha_t = ns.marginal_log_mean_coeff(t)
- alpha_t = torch.exp(log_alpha_t)
- h = lambda_t - lambda_prev_0
- rks = []
- D1s = []
- for i in range(1, order):
- t_prev_i = t_prev_list[-(i + 1)]
- model_prev_i = model_prev_list[-(i + 1)]
- lambda_prev_i = ns.marginal_lambda(t_prev_i)
- rk = (lambda_prev_i - lambda_prev_0) / h
- rks.append(rk)
- D1s.append((model_prev_i - model_prev_0) / rk)
- rks.append(1.)
- rks = torch.tensor(rks, device=x.device)
- K = len(rks)
- # build C matrix
- C = []
- col = torch.ones_like(rks)
- for k in range(1, K + 1):
- C.append(col)
- col = col * rks / (k + 1)
- C = torch.stack(C, dim=1)
- if len(D1s) > 0:
- D1s = torch.stack(D1s, dim=1) # (B, K)
- C_inv_p = torch.linalg.inv(C[:-1, :-1])
- A_p = C_inv_p
- if use_corrector:
- #print('using corrector')
- C_inv = torch.linalg.inv(C)
- A_c = C_inv
- hh = -h if self.predict_x0 else h
- h_phi_1 = torch.expm1(hh)
- h_phi_ks = []
- factorial_k = 1
- h_phi_k = h_phi_1
- for k in range(1, K + 2):
- h_phi_ks.append(h_phi_k)
- h_phi_k = h_phi_k / hh - 1 / factorial_k
- factorial_k *= (k + 1)
- model_t = None
- if self.predict_x0:
- x_t_ = (
- sigma_t / sigma_prev_0 * x
- - alpha_t * h_phi_1 * model_prev_0
- )
- # now predictor
- x_t = x_t_
- if len(D1s) > 0:
- # compute the residuals for predictor
- for k in range(K - 1):
- x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
- # now corrector
- if use_corrector:
- model_t = self.model_fn(x_t, t)
- D1_t = (model_t - model_prev_0)
- x_t = x_t_
- k = 0
- for k in range(K - 1):
- x_t = x_t - alpha_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
- x_t = x_t - alpha_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
- else:
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
- x_t_ = (
- (torch.exp(log_alpha_t - log_alpha_prev_0)) * x
- - (sigma_t * h_phi_1) * model_prev_0
- )
- # now predictor
- x_t = x_t_
- if len(D1s) > 0:
- # compute the residuals for predictor
- for k in range(K - 1):
- x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_p[k])
- # now corrector
- if use_corrector:
- model_t = self.model_fn(x_t, t)
- D1_t = (model_t - model_prev_0)
- x_t = x_t_
- k = 0
- for k in range(K - 1):
- x_t = x_t - sigma_t * h_phi_ks[k + 1] * torch.einsum('bkchw,k->bchw', D1s, A_c[k][:-1])
- x_t = x_t - sigma_t * h_phi_ks[K] * (D1_t * A_c[k][-1])
- return x_t, model_t
- def multistep_uni_pc_bh_update(self, x, model_prev_list, t_prev_list, t, order, x_t=None, use_corrector=True):
- #print(f'using unified predictor-corrector with order {order} (solver type: B(h))')
- ns = self.noise_schedule
- assert order <= len(model_prev_list)
- dims = x.dim()
- # first compute rks
- t_prev_0 = t_prev_list[-1]
- lambda_prev_0 = ns.marginal_lambda(t_prev_0)
- lambda_t = ns.marginal_lambda(t)
- model_prev_0 = model_prev_list[-1]
- sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
- log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
- alpha_t = torch.exp(log_alpha_t)
- h = lambda_t - lambda_prev_0
- rks = []
- D1s = []
- for i in range(1, order):
- t_prev_i = t_prev_list[-(i + 1)]
- model_prev_i = model_prev_list[-(i + 1)]
- lambda_prev_i = ns.marginal_lambda(t_prev_i)
- rk = ((lambda_prev_i - lambda_prev_0) / h)[0]
- rks.append(rk)
- D1s.append((model_prev_i - model_prev_0) / rk)
- rks.append(1.)
- rks = torch.tensor(rks, device=x.device)
- R = []
- b = []
- hh = -h[0] if self.predict_x0 else h[0]
- h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
- h_phi_k = h_phi_1 / hh - 1
- factorial_i = 1
- if self.variant == 'bh1':
- B_h = hh
- elif self.variant == 'bh2':
- B_h = torch.expm1(hh)
- else:
- raise NotImplementedError()
- for i in range(1, order + 1):
- R.append(torch.pow(rks, i - 1))
- b.append(h_phi_k * factorial_i / B_h)
- factorial_i *= (i + 1)
- h_phi_k = h_phi_k / hh - 1 / factorial_i
- R = torch.stack(R)
- b = torch.tensor(b, device=x.device)
- # now predictor
- use_predictor = len(D1s) > 0 and x_t is None
- if len(D1s) > 0:
- D1s = torch.stack(D1s, dim=1) # (B, K)
- if x_t is None:
- # for order 2, we use a simplified version
- if order == 2:
- rhos_p = torch.tensor([0.5], device=b.device)
- else:
- rhos_p = torch.linalg.solve(R[:-1, :-1], b[:-1])
- else:
- D1s = None
- if use_corrector:
- #print('using corrector')
- # for order 1, we use a simplified version
- if order == 1:
- rhos_c = torch.tensor([0.5], device=b.device)
- else:
- rhos_c = torch.linalg.solve(R, b)
- model_t = None
- if self.predict_x0:
- x_t_ = (
- expand_dims(sigma_t / sigma_prev_0, dims) * x
- - expand_dims(alpha_t * h_phi_1, dims)* model_prev_0
- )
- if x_t is None:
- if use_predictor:
- pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
- else:
- pred_res = 0
- x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
- if use_corrector:
- model_t = self.model_fn(x_t, t)
- if D1s is not None:
- corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
- else:
- corr_res = 0
- D1_t = (model_t - model_prev_0)
- x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
- else:
- x_t_ = (
- expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- - expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
- )
- if x_t is None:
- if use_predictor:
- pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
- else:
- pred_res = 0
- x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * pred_res
- if use_corrector:
- model_t = self.model_fn(x_t, t)
- if D1s is not None:
- corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
- else:
- corr_res = 0
- D1_t = (model_t - model_prev_0)
- x_t = x_t_ - expand_dims(sigma_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
- return x_t, model_t
- def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
- method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
- atol=0.0078, rtol=0.05, corrector=False,
- ):
- t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
- t_T = self.noise_schedule.T if t_start is None else t_start
- device = x.device
- if method == 'multistep':
- assert steps >= order, "UniPC order must be < sampling steps"
- timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
- #print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps, order {order}")
- assert timesteps.shape[0] - 1 == steps
- with torch.no_grad():
- vec_t = timesteps[0].expand((x.shape[0]))
- model_prev_list = [self.model_fn(x, vec_t)]
- t_prev_list = [vec_t]
- with tqdm.tqdm(total=steps) as pbar:
- # Init the first `order` values by lower order multistep DPM-Solver.
- for init_order in range(1, order):
- vec_t = timesteps[init_order].expand(x.shape[0])
- x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, init_order, use_corrector=True)
- if model_x is None:
- model_x = self.model_fn(x, vec_t)
- if self.after_update is not None:
- self.after_update(x, model_x)
- model_prev_list.append(model_x)
- t_prev_list.append(vec_t)
- pbar.update()
- for step in range(order, steps + 1):
- vec_t = timesteps[step].expand(x.shape[0])
- if lower_order_final:
- step_order = min(order, steps + 1 - step)
- else:
- step_order = order
- #print('this step order:', step_order)
- if step == steps:
- #print('do not run corrector at the last step')
- use_corrector = False
- else:
- use_corrector = True
- x, model_x = self.multistep_uni_pc_update(x, model_prev_list, t_prev_list, vec_t, step_order, use_corrector=use_corrector)
- if self.after_update is not None:
- self.after_update(x, model_x)
- for i in range(order - 1):
- t_prev_list[i] = t_prev_list[i + 1]
- model_prev_list[i] = model_prev_list[i + 1]
- t_prev_list[-1] = vec_t
- # We do not need to evaluate the final model value.
- if step < steps:
- if model_x is None:
- model_x = self.model_fn(x, vec_t)
- model_prev_list[-1] = model_x
- pbar.update()
- else:
- raise NotImplementedError()
- if denoise_to_zero:
- x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
- return x
- #############################################################
- # other utility functions
- #############################################################
- def interpolate_fn(x, xp, yp):
- """
- A piecewise linear function y = f(x), using xp and yp as keypoints.
- We implement f(x) in a differentiable way (i.e. applicable for autograd).
- The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
- Args:
- x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
- xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
- yp: PyTorch tensor with shape [C, K].
- Returns:
- The function values f(x), with shape [N, C].
- """
- N, K = x.shape[0], xp.shape[1]
- all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
- sorted_all_x, x_indices = torch.sort(all_x, dim=2)
- x_idx = torch.argmin(x_indices, dim=2)
- cand_start_idx = x_idx - 1
- start_idx = torch.where(
- torch.eq(x_idx, 0),
- torch.tensor(1, device=x.device),
- torch.where(
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
- ),
- )
- end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
- start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
- end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
- start_idx2 = torch.where(
- torch.eq(x_idx, 0),
- torch.tensor(0, device=x.device),
- torch.where(
- torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
- ),
- )
- y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
- start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
- end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
- cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
- return cand
- def expand_dims(v, dims):
- """
- Expand the tensor `v` to the dim `dims`.
- Args:
- `v`: a PyTorch tensor with shape [N].
- `dim`: a `int`.
- Returns:
- a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
- """
- return v[(...,) + (None,)*(dims - 1)]
|