123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409 |
- import inspect
- from pydantic import BaseModel, Field, create_model
- from typing import Any, Optional
- from typing_extensions import Literal
- from inflection import underscore
- from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
- from modules.shared import sd_upscalers, opts, parser
- from typing import Dict, List
- API_NOT_ALLOWED = [
- "self",
- "kwargs",
- "sd_model",
- "outpath_samples",
- "outpath_grids",
- "sampler_index",
- # "do_not_save_samples",
- # "do_not_save_grid",
- "extra_generation_params",
- "overlay_images",
- "do_not_reload_embeddings",
- "seed_enable_extras",
- "prompt_for_display",
- "sampler_noise_scheduler_override",
- "ddim_discretize"
- ]
- class ModelDef(BaseModel):
- """Assistance Class for Pydantic Dynamic Model Generation"""
- field: str
- field_alias: str
- field_type: Any
- field_value: Any
- field_exclude: bool = False
- class PydanticModelGenerator:
- """
- Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
- source_data is a snapshot of the default values produced by the class
- params are the names of the actual keys required by __init__
- """
- def __init__(
- self,
- model_name: str = None,
- class_instance=None,
- additional_fields=None,
- ):
- def field_type_generator(k, v):
- # field_type = str if not overrides.get(k) else overrides[k]["type"]
- # print(k, v.annotation, v.default)
- field_type = v.annotation
- return Optional[field_type]
- def merge_class_params(class_):
- all_classes = list(
- filter(lambda x: x is not object, inspect.getmro(class_)))
- parameters = {}
- for classes in all_classes:
- parameters = {**parameters, **
- inspect.signature(classes.__init__).parameters}
- return parameters
- self._model_name = model_name
- self._class_data = merge_class_params(class_instance)
- self._model_def = [
- ModelDef(
- field=underscore(k),
- field_alias=k,
- field_type=field_type_generator(k, v),
- field_value=v.default
- )
- for (k, v) in self._class_data.items() if k not in API_NOT_ALLOWED
- ]
- for fields in additional_fields:
- self._model_def.append(ModelDef(
- field=underscore(fields["key"]),
- field_alias=fields["key"],
- field_type=fields["type"],
- field_value=fields["default"],
- field_exclude=fields["exclude"] if "exclude" in fields else False))
- def generate_model(self):
- """
- Creates a pydantic BaseModel
- from the json and overrides provided at initialization
- """
- fields = {
- d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias, exclude=d.field_exclude)) for d in self._model_def
- }
- DynamicModel = create_model(self._model_name, **fields)
- DynamicModel.__config__.allow_population_by_field_name = True
- DynamicModel.__config__.allow_mutation = True
- return DynamicModel
- StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
- "StableDiffusionProcessingTxt2Img",
- StableDiffusionProcessingTxt2Img,
- [
- {"key": "sampler_index", "type": str, "default": "Euler"},
- {"key": "script_name", "type": str, "default": None},
- {"key": "script_args", "type": list, "default": []},
- {"key": "send_images", "type": bool, "default": True},
- {"key": "save_images", "type": bool, "default": False},
- {"key": "alwayson_scripts", "type": dict, "default": {}},
- {"key": "task_id", "type": str, "default": None},
- ]
- ).generate_model()
- StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
- "StableDiffusionProcessingImg2Img",
- StableDiffusionProcessingImg2Img,
- [
- {"key": "sampler_index", "type": str, "default": "Euler"},
- {"key": "init_images", "type": list, "default": None},
- {"key": "denoising_strength", "type": float, "default": 0.75},
- {"key": "mask", "type": str, "default": None},
- {"key": "include_init_images", "type": bool,
- "default": False, "exclude": True},
- {"key": "script_name", "type": str, "default": None},
- {"key": "script_args", "type": list, "default": []},
- {"key": "send_images", "type": bool, "default": True},
- {"key": "save_images", "type": bool, "default": False},
- {"key": "alwayson_scripts", "type": dict, "default": {}},
- {"key": "task_id", "type": str, "default": None},
- ]
- ).generate_model()
- class TextToImageResponse(BaseModel):
- images: List[str] = Field(default=None, title="Image",
- description="The generated image in base64 format.")
- parameters: dict
- info: str
- class ImageToImageResponse(BaseModel):
- images: List[str] = Field(default=None, title="Image",
- description="The generated image in base64 format.")
- parameters: dict
- info: str
- class ExtrasBaseRequest(BaseModel):
- resize_mode: Literal[0, 1] = Field(
- default=0, title="Resize Mode", description="Sets the resize mode: 0 to upscale by upscaling_resize amount, 1 to upscale up to upscaling_resize_h x upscaling_resize_w.")
- show_extras_results: bool = Field(
- default=True, title="Show results", description="Should the backend return the generated image?")
- gfpgan_visibility: float = Field(default=0, title="GFPGAN Visibility", ge=0, le=1, allow_inf_nan=False,
- description="Sets the visibility of GFPGAN, values should be between 0 and 1.")
- codeformer_visibility: float = Field(default=0, title="CodeFormer Visibility", ge=0, le=1, allow_inf_nan=False,
- description="Sets the visibility of CodeFormer, values should be between 0 and 1.")
- codeformer_weight: float = Field(default=0, title="CodeFormer Weight", ge=0, le=1, allow_inf_nan=False,
- description="Sets the weight of CodeFormer, values should be between 0 and 1.")
- upscaling_resize: float = Field(default=2, title="Upscaling Factor", ge=1, le=8,
- description="By how much to upscale the image, only used when resize_mode=0.")
- upscaling_resize_w: int = Field(default=512, title="Target Width", ge=1,
- description="Target width for the upscaler to hit. Only used when resize_mode=1.")
- upscaling_resize_h: int = Field(default=512, title="Target Height", ge=1,
- description="Target height for the upscaler to hit. Only used when resize_mode=1.")
- upscaling_crop: bool = Field(default=True, title="Crop to fit",
- description="Should the upscaler crop the image to fit in the chosen size?")
- upscaler_1: str = Field(default="None", title="Main upscaler",
- description=f"The name of the main upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
- upscaler_2: str = Field(default="None", title="Secondary upscaler",
- description=f"The name of the secondary upscaler to use, it has to be one of this list: {' , '.join([x.name for x in sd_upscalers])}")
- extras_upscaler_2_visibility: float = Field(default=0, title="Secondary upscaler visibility", ge=0, le=1,
- allow_inf_nan=False, description="Sets the visibility of secondary upscaler, values should be between 0 and 1.")
- upscale_first: bool = Field(default=False, title="Upscale first",
- description="Should the upscaler run before restoring faces?")
- class ExtraBaseResponse(BaseModel):
- html_info: str = Field(
- title="HTML info", description="A series of HTML tags containing the process info.")
- class ExtrasSingleImageRequest(ExtrasBaseRequest):
- image: str = Field(default="", title="Image",
- description="Image to work on, must be a Base64 string containing the image's data.")
- class ExtrasSingleImageResponse(ExtraBaseResponse):
- image: str = Field(default=None, title="Image",
- description="The generated image in base64 format.")
- class FileData(BaseModel):
- data: str = Field(title="File data",
- description="Base64 representation of the file")
- name: str = Field(title="File name")
- class ExtrasBatchImagesRequest(ExtrasBaseRequest):
- imageList: List[FileData] = Field(
- title="Images", description="List of images to work on. Must be Base64 strings")
- class ExtrasBatchImagesResponse(ExtraBaseResponse):
- images: List[str] = Field(
- title="Images", description="The generated images in base64 format.")
- class PNGInfoRequest(BaseModel):
- image: str = Field(
- title="Image", description="The base64 encoded PNG image")
- class PNGInfoResponse(BaseModel):
- info: str = Field(
- title="Image info", description="A string with the parameters used to generate the image")
- items: dict = Field(
- title="Items", description="An object containing all the info the image had")
- class InterruptRequest(BaseModel):
- task_id: str = Field(default="", title="task id", description="任务编号")
- class ProgressRequest(BaseModel):
- task_id: str = Field(default="", title="task id", description="任务编号")
- skip_current_image: bool = Field(
- default=False, title="Skip current image", description="Skip current image serialization")
- class ProgressResponse(BaseModel):
- progress: float = Field(
- title="Progress", description="The progress with a range of 0 to 1")
- eta_relative: float = Field(title="ETA in secs")
- state: dict = Field(
- title="State", description="The current state snapshot")
- current_image: str = Field(default=None, title="Current image",
- description="The current image in base64 format. opts.show_progress_every_n_steps is required for this to work.")
- textinfo: str = Field(default=None, title="Info text",
- description="Info text used by WebUI.")
- class InterrogateRequest(BaseModel):
- image: str = Field(default="", title="Image",
- description="Image to work on, must be a Base64 string containing the image's data.")
- model: str = Field(default="clip", title="Model",
- description="The interrogate model used.")
- class InterrogateResponse(BaseModel):
- caption: str = Field(default=None, title="Caption",
- description="The generated caption for the image.")
- class TrainResponse(BaseModel):
- info: str = Field(
- title="Train info", description="Response string from train embedding or hypernetwork task.")
- class CreateResponse(BaseModel):
- info: str = Field(title="Create info",
- description="Response string from create embedding or hypernetwork task.")
- class PreprocessResponse(BaseModel):
- info: str = Field(title="Preprocess info",
- description="Response string from preprocessing task.")
- fields = {}
- for key, metadata in opts.data_labels.items():
- value = opts.data.get(key)
- optType = opts.typemap.get(type(metadata.default), type(
- metadata.default)) if metadata.default else Any
- if metadata is not None:
- fields.update({key: (Optional[optType], Field(
- default=metadata.default, description=metadata.label))})
- else:
- fields.update({key: (Optional[optType], Field())})
- OptionsModel = create_model("Options", **fields)
- flags = {}
- _options = vars(parser)['_option_string_actions']
- for key in _options:
- if (_options[key].dest != 'help'):
- flag = _options[key]
- _type = str
- if _options[key].default is not None:
- _type = type(_options[key].default)
- flags.update(
- {flag.dest: (_type, Field(default=flag.default, description=flag.help))})
- FlagsModel = create_model("Flags", **flags)
- class SamplerItem(BaseModel):
- name: str = Field(title="Name")
- aliases: List[str] = Field(title="Aliases")
- options: Dict[str, str] = Field(title="Options")
- class UpscalerItem(BaseModel):
- name: str = Field(title="Name")
- model_name: Optional[str] = Field(title="Model Name")
- model_path: Optional[str] = Field(title="Path")
- model_url: Optional[str] = Field(title="URL")
- scale: Optional[float] = Field(title="Scale")
- class LatentUpscalerModeItem(BaseModel):
- name: str = Field(title="Name")
- class SDModelItem(BaseModel):
- title: str = Field(title="Title")
- model_name: str = Field(title="Model Name")
- hash: Optional[str] = Field(title="Short hash")
- sha256: Optional[str] = Field(title="sha256 hash")
- filename: str = Field(title="Filename")
- config: Optional[str] = Field(title="Config file")
- class SDVaeItem(BaseModel):
- model_name: str = Field(title="Model Name")
- filename: str = Field(title="Filename")
- class HypernetworkItem(BaseModel):
- name: str = Field(title="Name")
- path: Optional[str] = Field(title="Path")
- class FaceRestorerItem(BaseModel):
- name: str = Field(title="Name")
- cmd_dir: Optional[str] = Field(title="Path")
- class RealesrganItem(BaseModel):
- name: str = Field(title="Name")
- path: Optional[str] = Field(title="Path")
- scale: Optional[int] = Field(title="Scale")
- class PromptStyleItem(BaseModel):
- name: str = Field(title="Name")
- prompt: Optional[str] = Field(title="Prompt")
- negative_prompt: Optional[str] = Field(title="Negative Prompt")
- class EmbeddingItem(BaseModel):
- step: Optional[int] = Field(
- title="Step", description="The number of steps that were used to train this embedding, if available")
- sd_checkpoint: Optional[str] = Field(
- title="SD Checkpoint", description="The hash of the checkpoint this embedding was trained on, if available")
- sd_checkpoint_name: Optional[str] = Field(
- title="SD Checkpoint Name", description="The name of the checkpoint this embedding was trained on, if available. Note that this is the name that was used by the trainer; for a stable identifier, use `sd_checkpoint` instead")
- shape: int = Field(
- title="Shape", description="The length of each individual vector in the embedding")
- vectors: int = Field(
- title="Vectors", description="The number of vectors in the embedding")
- class EmbeddingsResponse(BaseModel):
- loaded: Dict[str, EmbeddingItem] = Field(
- title="Loaded", description="Embeddings loaded for the current model")
- skipped: Dict[str, EmbeddingItem] = Field(
- title="Skipped", description="Embeddings skipped for the current model (likely due to architecture incompatibility)")
- class MemoryResponse(BaseModel):
- ram: dict = Field(title="RAM", description="System memory stats")
- cuda: dict = Field(title="CUDA", description="nVidia CUDA memory stats")
- class ScriptsList(BaseModel):
- txt2img: list = Field(default=None, title="Txt2img",
- description="Titles of scripts (txt2img)")
- img2img: list = Field(default=None, title="Img2img",
- description="Titles of scripts (img2img)")
- class ScriptArg(BaseModel):
- label: str = Field(default=None, title="Label",
- description="Name of the argument in UI")
- value: Optional[Any] = Field(
- default=None, title="Value", description="Default value of the argument")
- minimum: Optional[Any] = Field(
- default=None, title="Minimum", description="Minimum allowed value for the argumentin UI")
- maximum: Optional[Any] = Field(
- default=None, title="Minimum", description="Maximum allowed value for the argumentin UI")
- step: Optional[Any] = Field(default=None, title="Minimum",
- description="Step for changing value of the argumentin UI")
- choices: Optional[List[str]] = Field(
- default=None, title="Choices", description="Possible values for the argument")
- class ScriptInfo(BaseModel):
- name: str = Field(default=None, title="Name", description="Script name")
- is_alwayson: bool = Field(default=None, title="IsAlwayson",
- description="Flag specifying whether this script is an alwayson script")
- is_img2img: bool = Field(default=None, title="IsImg2img",
- description="Flag specifying whether this script is an img2img script")
- args: List[ScriptArg] = Field(
- title="Arguments", description="List of script's arguments")
|