12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- import torch
- from packaging import version
- from modules import devices
- from modules.sd_hijack_utils import CondFunc
- class TorchHijackForUnet:
- """
- This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
- this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
- """
- def __getattr__(self, item):
- if item == 'cat':
- return self.cat
- if hasattr(torch, item):
- return getattr(torch, item)
- raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
- def cat(self, tensors, *args, **kwargs):
- if len(tensors) == 2:
- a, b = tensors
- if a.shape[-2:] != b.shape[-2:]:
- a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
- tensors = (a, b)
- return torch.cat(tensors, *args, **kwargs)
- th = TorchHijackForUnet()
- # Below are monkey patches to enable upcasting a float16 UNet for float32 sampling
- def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
- if isinstance(cond, dict):
- for y in cond.keys():
- if isinstance(cond[y], list):
- cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]]
- else:
- cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y]
- with devices.autocast():
- return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float()
- class GELUHijack(torch.nn.GELU, torch.nn.Module):
- def __init__(self, *args, **kwargs):
- torch.nn.GELU.__init__(self, *args, **kwargs)
- def forward(self, x):
- if devices.unet_needs_upcast:
- return torch.nn.GELU.forward(self.float(), x.float()).to(devices.dtype_unet)
- else:
- return torch.nn.GELU.forward(self, x)
- ddpm_edit_hijack = None
- def hijack_ddpm_edit():
- global ddpm_edit_hijack
- if not ddpm_edit_hijack:
- CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
- CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
- ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
- unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
- CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
- CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
- if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
- CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
- CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
- CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU)
- first_stage_cond = lambda _, self, *args, **kwargs: devices.unet_needs_upcast and self.model.diffusion_model.dtype == torch.float16
- first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devices.dtype_vae), **kwargs)
- CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
- CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
- CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)
- CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model, unet_needs_upcast)
- CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
|